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1 Introduction

Federal funds market, probably the most important market for monetary policy implementation,

has been continuously declining since 2008, in spite of the fact that the American banks are larger

than ever after the Great Recession. The market volume of Federal funds by the end of 2019

(before the pandemic) has dropped to less than 20% of its peak, while the total assets of banks have

expanded by 4.5 times during the same period. Although it has become a concern of policymakers,

this secular decline of the Federal funds market is still largely a puzzle (more on this later).

We propose a new mechanism with a search model to explain the puzzle: the disintermediation

channel. Our new channel is motivated by an observation that Federal funds market was once

heavily intermediated. A Federal funds trade is intermediated if the reserve-purchasing bank is

also selling reserves on the same day, i.e., the bank borrows to lend.1 Before 2008, typically more

than 80% of the Federal funds were purchased by banks that intermediate. This feature is distinct

from markets where the tradings of participants are usually one-sided. As illustrated in Figure 3,

since the forth quarter of 2008, the decline in the Federal funds market is largely driven by the

decline in the number of intermediating banks (fell from around 600 to 100), as well as their level of

intermediated trades. We refer as to the disintermediation of the Federal funds market and explain

with a search model. We notice that the timing of the disintermediation coincides with a series

of unconventional monetary policies, which start with the introduction of IOER, followed by three

rounds of quantitative easing (QE) as well as the changes in regulation, such as the introduction

of Basel III and widening of the basis of the FDIC’s deposit insurance assessment fee. The latter

increases the balance sheet cost of holding reserves. To identify the effects of these policies on

the Federal funds trades and intermediated trades, we perform a series of instrumental variable

regressions on a panel dataset of bank-level Federal funds trade volume. The dataset is collected

from various sources, such as FFIEC Call Reports, Form FR-Y9C and SEC 10-Qs and 10-Ks. We

find that the unconventional monetary policies significantly lower the level of intermediated trades

on both extensive and intensive margin, and also impede the allocation of Federal funds from net

lenders to net borrowers. These findings are robust to alternative specifications.

However, according to the standard random matching model, any changes in the interest on

excess reserves or balance sheet cost of holding reserves do not affect the level of intermediation

—all the effects are absorbed in the changes of the Federal funds rates. Furthermore, the random

matching model predicts that the vast increase of reserves injected by QEs should have increased

the level of intermediation instead. The reason is that, since matching is costless in Afonso &

Lagos (2015b), banks always search for counterparties in the market, and they always trade to

1For readers not familiar with the jargons, Federal funds purchased are borrowing of reserves by buying the Federal
funds today and selling back tomorrow. The price difference is the interest rate associated, i.e., the Federal funds
rate. Similarly, Federal funds sold are lending of reserves.
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split their reserve holdings equally once they match with each other. Therefore, the level of trades,

along both the extensive and intensive margins, does not change even though the introduction

of IOER or balance sheet cost changes the marginal value of holding reserves, as long as it is

diminishing. It also implies that banks should trade more reserves when their average holding of

reserves increases proportionally, ceteris paribus. Cost-free search means in the constrained effi cient

allocation, banks should always search and share the reserve holdings equally, coinciding with the

equilibrium allocation. We show that these features no longer hold when putting search intensity

becomes costly.

While the disintermediation effect of transaction costs may seem straightforward, the disinter-

mediation effect of the unconventional monetary policy calls for an explanation. It is puzzling since

it is commonly thought that government sponsored enterprises (GSE) like Feddie Mae and Federal

Home Loan Banks are not entitled to the IOER. It implies that there should be more Federal funds

trades between GSEs and non-GSEs, and intermediated loans in general, to earn the abitrage of

the IOER. Our theory is that unconventional monetary policy also amplifies the disintermediation

effect of transaction costs. To illustrate this, we build a continuous-time costly search and bargain-

ing model of the over-the-counter unsecured loan market. The baseline model admits a closed-form

solution, which allows for sharp comparative statics. In this case, the IOER reduces the volume

of intermediated loans, raises the average level of the Fed fund rates but reduces their dispersion.

Balance sheet cost and regulation cost reduce the volume but have ambiguous effects on the level

and dispersion of the Fed fund rates. Also, with costly endogenous search, theoretically there could

be multiple equilibria; in particular, no trading is always an equilibrium. We propose a refinement

that always selects the most “liquid” equilibrium and prove its existence and uniqueness in the

general model.

We further calibrate our theoretical model with the empirical data via simulated method of

moments, and conduct counterfactual analysis to evaluate the magnitudes of unconventional mone-

tary policies and regulations on the disintermediation. We find that the disintermediation is mostly

driven by IOER and the rising transaction cost, while the effect of excess reserve balances is small.

In particular, in the year of 2018, the share of intermediation volume in total Federal funds volume

doubles if we decrease IOER to its 2006 level (which is zero), and the share increases by four times

if we decrease the estimated transaction costs to the 2006 level.

Literature. Our paper relates to several strands of literature. First, starting with Poole (1968),

there has been a series of researches on the Federal funds market in partial equilibrium or general

equilibrium models. Hamilton (1996) provides a partial equilibrium model to study the effects of

transaction costs on the daily dynamics of the Federal funds rates. More recently, some studies

focus on the monetary policy implementation and passthrough effi ciency in the environment of
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excess reserves, such as Duffi e & Krishnamurthy (2016), Bech & Keister (2017). In the meantime,

other papers discuss the role of interbank markets and unconventional monetary policies on the

aggregate outcome and welfare, such as Kashyap & Stein (2012), Ennis (2018), Williamson (2019),

Bigio & Sannikov (2021) and Bianchi & Bigio (ming).

Another strand of literature focuses on capturing the over-the-counter (OTC) nature of the

Federal funds markets and its implications. On the one hand, some reserches develop two-sided

matching models to capture the search and matching frictions between lenders and borrowers, such

as Berentsen & Monnet (2008), Bech & Monnet (2016), Afonso et al. (2019) and Chiu et al. (2020).

These models are able to fit a number of aggregate empirical moments of the interbank markets in

the U.S. and Europe and provide fruitful policy implications. However, the intermediation trades,

which are important features of OTC markets, are missing in those models. On the other hand,

people use continuous-time one-sided matching models to capture the intermediation feature of

OTC markets. The one-sided matching models are pioneered by the seminal works of Afonso

& Lagos (2015b) and Afonso & Lagos (2015a). Our model endogenizes the time-varying search

intensity to study the disintermediation trades. The related papers include Duffi e et al. (2005),

Lagos & Rocheteau (2009), Trejos & Wright (2016), Farboodi et al. (2017), Lagos & Zhang (2019),

Üslü (2019), Hugonnier et al. (2020) and Liu (2020).

There have been other papers that use network approach to study the interbank markets. For

example, Bech & Atalay (2010) explores the network topology of the Federal funds market, and

Gofman (2017) builds a network-based model of the interbank lending market and quantifies the

effi ciency-stability trade-offs of regulating large banks. Chang & Zhang (2018) develops a dynamic

model that allows agents to endogenously choose counterparties and form network structure. They

find that some agents specialize in market making and become the core of the financial network,

with the purpose of eliminating information frictions.

Outline. The remainder of the paper is as follows. Section 2 describes the institutional back-

ground and the aggregate empirical facts that motivate our paper. Section 3 documents the empir-

ical evidence on the disintermediation effect of unconventional monetary policies at the individual

bank level. Section 4 presents the theoretical framework for our analysis. Section 5 provides a class

of models that allows for closed-form solutions and comparative statics. Section 6 structurally esti-

mates the analytical model and quantitatively decomposes the effects of unconventional monetary

policies on Federal funds intermediation. The final section, 7, concludes the paper.

2 The Landscape of the Federal Funds Market

This section introduces the institutional features, the policy and regulatory environment and the

aggregate trade dynamics in the Federal funds market to motivate our estimation and theoretical
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model in the following sections. We will focus on the change of the landscape of this market before

and after the Great Recession as the market has changed drastically since then. To measure the

aggregate and composition of the Fed funds trade activity, we aggregate the data from a set of

regulatory filings, including the quarterly Consolidated Report of Condition and Income for U.S.

banks and branches (Call reports), the Consolidated Financial Statements (Form FR Y-9C) for

bank holding companies (BHC) and SEC 10-Ks and 10-Qs for other eligible entities.

2.1 Institutional Background

The Federal funds market is a market for unsecured loans of dollar reserves held at the Federal

Reserve Banks. The market interest rates on these loans are commonly referred to as the Federal

funds rates. Most of the Federal funds transactions are overnight (99%). Financial institutions

(FIs) rely on the Fed funds market for short-term liquidity needs: First, the Federal funds is not

considered as the deposits to the borrower bank under Regulation D, thus it is useful for borrower

banks to satisfy their reserve requirements and payments needs. Second, the lender FIs can lend

excess reserves and earn overnight Fed funds rate. Regarding the market structure, the Federal

funds market is an over-the-counter (OTC) market without centralized exchange. A borrower bank

(Federal funds purchased) and a lender bank (Federal funds sold) meet and trade bilaterally, and

the transfer of funds is completed through the Fed’s reserve accounts.

The market of Federal Funds has been the epicenter where monetary policies are implemented.

Before the Great Recession, the Federal Reserve adjusted the supply of reserve balances, by the

purchase and sale of securities in the open market, so as to keep the Fed fund rates around the

target of monetary policy. Since the Great Recession, the landscape of the market has changed

drastically due to a series of unconventional monetary policies and regulations. Figure 1 plots the

timeline of these changes, which start with the introductin of interest on excess reserves (IOER),

followed by three rounds of quantitative easing (QE) as well as changes in regulation, such as the

widening of the basis for FDIC assessment fee and the introduction of Basel III regulations.

Figure 1: Timeline of unconventional monetary policy and regulation

IOER

200810

QE1

200811

QE2

201011

Widening of FDIC

assessment base

201104

QE3

201209

Leverage ratio

requirement

201301

Liquidity

coverage ratio

201501

Notes: This figure plots the timeline of unconventional monetary policies and regulations since the Great Recession.

The numbers on the timeline represents the date (year-month) when the policy or regulation is introduced.
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Due to the changes in policy and regulations, the Fed funds market has entered a stage with

excess reserves, and the Federal Reserve relies on two new policy tools to implement its desired

target range for the Federal funds rate: the IOER, which it offers to eligible depository institutions,

is set at the top of the target ranges; and the rate of return at the overnight reverse repurchase

(ON RRP) facility, which is available to an expanded set of counterparties including government-

sponsored enterprises (GSEs) and some money market funds, is set at the bottom of the rage.

Figure 2 shows the time series of the unconventional monetary policies. Panel (a) plots the path of

IOER, which has been steadily increasing between 2008Q4 and 2018Q4. Panel (b) plots the mean

and standard deviation of individual excess reserve balances in the same period , which has grown

drastically since the Great Recession.

Figure 2: IOER and Excess Reserves

(a) IOER (b) Excess reserves

Notes: This figure plots the sequences of IOER, the mean and standard deviation of individual excess reserve balances

from 2006Q1 to 2018Q4. Data source: FRED, Call reports, FR Y-9C.

2.2 (Dis)intermediation in the Federal funds market

Due to the over-the-counter structure, the Fed funds trades involve a significant share of intermedi-

ation trading. A group of banks act as intermediaries by borrowing reserves from the lender banks

and lending them to others on the same day. We find that the intermediary banks are responsible

for most of the decline in Fed funds volume. Specifically, by consolidating the individual balance

sheet data, we decompose the total Fed funds volume into three groups: intermediary banks, non-

intermediary banks and government-sponsored enterprises (GSEs). As illustrated in Panel (a) of

Figure 3, the decline of Fed funds purchased (borrowing) is entirely driven by intermediary banks,

whose volume of borrowing sharply declined from the peak of $195 billion in 2007Q2 to an average

of $22 billion in 2018. At the same time, the volume of borrowing by other groups stayed stable over
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time. Panel (b) of Figure 3 suggests that, on the supply side, the depository institutions account

for most of the decline of Fed funds lending. In particular, the lendings by intermediary banks was

more than $60 billion on average before 2008, but decreased sharply to almost zero right after the

Great Recession. The non-intermediary banks accounted for about $50 billion lending before the

Great Recession, and shrank gradually to less than $5 billion over time in 2018.

Figure 3: Decomposition of Federal funds volume

(a) Federal funds purchased (b) Federal funds sold

Notes: This figure plots the decomposition of the aggregate Federal funds purchased and sold by groups from 2006Q1

to 2018Q4. Data source: Call reports, FR Y-9C, SEC 10-K and 10-Q.

The decline of borrowing and lending by intermediaries imply the decline of Fed funds real-

location. We find that this decline occurs on both extensive and intensive margin. As plotted

in Panel (a) of Figure 4, a significant share (more than 15%) of Fed funds volume is traded for

intermediating purposes. However, since the financial crisis has declined by more than two thirds

to less than 5%. Moreover, Panel (b) of Figure 4 shows that the number of intermediary banks has

also decreased from 600 in 2006 to less than 100 at the end of 2018.

Why did disintermediation happen? Certainly, the Federal funds market has been going through

a transition from the Great Recession, but it is worth noting that the timing of the disintermediation

coincides with the changes in the monetary policies and regulations, as plotted in Figure 1. All

these changes closely relate to banks’incentive to trade Fed funds. For example, the introduction

of IOER raises the return of holding reserves, which lowers banks’ lending incentives and raises

their borrowing incentives. The QEs have left banks flush with excess reserves. As a result, the

demand for borrowing reserves to meet the reserve requirement and payment needs has become

rare. The regulation changes The widening of FDIC assessment base and Basel III regulations

increase the balance sheet cost of holding reserves. For example, FDIC insurance premium is now

charged according to the size of FI’s assets (instead of the size of deposit), which is increasing in
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Figure 4: Aggregate Fed funds intermediation

(a) Intermediation volume share (b) Number of intermediary banks

Notes: This figure plots the intermediation volume share and number of intermediary banks. Data source: Call

reports, FR Y-9C.

the Federal Funds borrowed. Furthermore, Basel III now imposes a cap on the FI’s leverage ratio

and a floor of the holding of liquid (and usually low-return) asset to cover potential cash outflow,

increasing the regulation cost.

Our empirical facts about the disintermediation coincide with the existing literature. For exam-

ple, Keating & Macchiavelli (2017) find that the proportion of intermediated funds declined sharply

after the financial crisis. On the daily level, the domestic banks keep more than 99% percent of Fed

funds borrowed and foreign banks keep more than 80%. These evidence document the importance

of intermediation to the substantial decline of Fed funds volume. We will focus on examining banks’

incentive to intermediate and its implications for the monetary policy implementation.

3 Empirical Evidence

In this section, we document the empirical relationship of Federal funds intermediation trades and

the unconventional monetary policies. Our focus is to test the following hypotheses using U.S.

bank-level data described in Section 3.1.1:

Hypothesis 1 The number of intermediary banks and the individual bank’s volume of Federal

funds intermediation decrease in IOER and the aggregate excess reserves.

Based on the facts shown in Figure 4, the first hypothesis tests the causal effect of IOER and

the aggregate excess reserves on the intermediation trading in Federal funds market. We examine

the impact on both extensive margin and intensive margin. In addition to testing the impact

on intermediation trades, we also investigate whether the disintermediation effect of IOER and
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aggregate excess reserves affect the allocation of reserves between the reserve net lenders and net

borrowers.

Hypothesis 2 A higher IOER and aggregate excess reserves lower the net Federal funds purchased

by net borrowers (banks that have net borrowing of Federal funds) and the net Federal funds

lent by net lenders (banks that have net lending of Federal funds).

This hypothesis examines whether borrower banks are less able to find lenders if the interme-

diation trades decrease. The following sections describe the data and estimation results.

3.1 Data

3.1.1 Bank-level data

The bank-level financial data are collected from various sources. We use the quarterly Consolidated

Report of Condition and Income for U.S. banks and branches (commonly known as “Call reports”)

and Consolidated Fiancial Statemennts (Form FR Y-9C) for Bank Holding Companies (BHCs).2

The call reports and Form FR Y-9C are quarterly filed with the Federal Reserve by all U.S. banks

and branches, and form FR Y-9C is filed by all U.S. holding companies with total consolidated assets

of $1 billion or more (prior to 2015, this threshold was $500 million. Since September 2018, this

number changes to $3 billion). These files report the balance sheet data of US banks at the end of

each quarter, including the Federal funds purchased (Fed funds borrowing), Federal funds sold (Fed

funds lending) and other balance sheet characteristics. Given the Fed funds are mostly overnight,

the volume of Fed funds trade reported in these files measures banks’Fed funds borrowing and

lending on the last business day of each quarter. Our data covers the period going from 2003Q1

to 2018Q4.3 We measure each variable at the consolidated top holder level. Aggregating the

variables to the top holder level not only avoids double counting, but also eliminates the bilateral

trades between subsidiaries of a bank holding company that are not implemented in the Fed funds

market.

For each top holder in each quarter, we construct the following variables: (1) Net volume of

Fed funds purchased normalized by total assets (ffnet_assets), i.e.

ffnet_assets =
Fed funds purchased− Fed funds sold

total assets
.

It measures a bank’s net borrowing of Fed funds as a share of bank assets. (2) Volume of Fed funds

reallocation normalized by total assets (ffreallo_assets), i.e.

ffreallo_assets =
Fed funds purchased+ Fed funds sold

total assets
− |ffnet_assets| .

2Appendix A describes the detailed data source and construction process.
3We also use the data in 2002Q4 as the lagged values of variables in 2003Q1.
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This variable follows the definition of Fed funds reallocation in Afonso & Lagos (2015b), which is

equal to the Fed funds trade in excess of the net borrowing. (3) Excess reserve balances before

Federal funds trade normalized by total assets before Fed funds trade, i.e.

exres_assets =
excess reserve balances before Federal funds trade

total assets
.

The excess reserve balances before Federal funds trade represent a bank’s holdings of Federal re-

serves balances in excess of its reserve requirement when it enters the Federal funds market. It

captures individual heterogeneity of trade incentives in the Fed funds market. It is equal to a bank’s

excess reserve balances recorded in the bank balance sheets minus the net Federal funds purchased

(Federal federal funds purchased minus Federal funds sold). Moreover, for individual controls,

we include the following balance-sheet variables: (1) logged value of total assets (log_assets);

(2) total loans normalized by total assets (loan_assets); (3) total nonperforming loans normal-

ized by total assets (npl_assets); (4) total high-quality liquid assets normalized by total assets

(hqla_assets); (5) total equity normalized by total assets (equi_assets); (6) tier-1 leverage ratio

(tier1_lev_ratio); (7) ROA (roa); (8) dummies of top holders’entity types (entity_type).

3.1.2 Aggregate-level data

We use two sets of aggregate variables. The first set includes Interest Rate on Reserves (ioer),

Primary Credit Rate(dw), quarterly real GDP growth rate (rgdpg), quarterly unemployment rate

(unemp), standard deviation of the Fed’s general treasury account in a quarter. All these variables

are measured at the end of a quarter. The interest rate on excess reserves and primary credit rate

are the main regressors of monetary policy. They represent the outside return of holding reserves by

lender banks and borrower banks at the end of a trading session, respectively. The other variables

are the aggregate controls in regressions.

The second set of aggregate-level variables are obtained from bank-level data. For the cross

section of top holders in each quarter, we construct the moments of excess reserve distribution: (1)

aggregate excess reserves normalized by aggregate bank assets (agg_exres_assets); (2) standard

deviation of excess reserve balances normalized by the mean (sd_exres_norm =S.D. of excess

reserves/Mean of excess reserves);4 (3) skewness of excess reserve distribution (sk_exres). The

aggregate excess reserves agg_exres_assets is the third main regressor of monetary policy. It

captures the effect of the Fed’s total reserve balances on Fed funds trade. Meanwhile, we control

the standard deviation and skewness to capture the effect of reserve distribution.

4Using standard deviation of excess reserves normalized by average assets produces similar results.
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3.2 Effects on intermediation trade

Our first specification explores the impact of IOER and aggregate reserves on banks’intermediation

trading. Note that in the data sample, only a fraction of banks are intermediaries, and the measure

of individual bank’s intermediation, ffreallo_assets, is non-negative. Thus we study how IOER

and aggregate reserves impact both the probability of intermediation trades (extensive margin) and

the volume of intermediation (intensive margin). In particular, we run probit and tobit regressions

on the following specification on the sample of banks that hold positive total reserves at the Fed

account and intermediate Federal funds at least once in the data sample:

yi,t = fixed_effects+ β0exres_assetsi,t + β1ioert + β2ioert × exres_assetsi,t (1)

+β3agg_exres_assetst + β4agg_exres_assetst × exres_assetsi,t

+β5dwt + β6dwt × exres_assetsi,t + γ · controlsi,t + εi,t,

where yi,t = 1 {ffreallo_assetsi,t > 0} in probit regression, and yi,t = ffreallo_assetsi,t in tobit

regressions. The term fixed_effects represents the fixed effects on bank entity type, Fed district,

and the time dummies for 2008 financial crisis and post-crisis periods. By adding the interaction

between the policy variables and individual excess reserve balances, we also investigate the potential

heterogeneous effects of the unconventional monetary policies across banks.

The probit and tobit estimation assumes exogeneity of the regressors. However, the Fed funds

trade volume could depend on unobserved factors that correlate with the main regressors. For

example, a bank’s Federal funds trade volume and excess reserve balances could be driven by some

common unobserved factors, e.g. sophistication of balance sheet management. Moreover, a bank’s

incentive to trade Federal funds could be driven by some unobserved aggregate shocks that are

correlated with the changes in IOER, primary credit rate and aggregate excess reserves. Thus

we augment the estimation with instrumental-variable probit and tobit regressions to examine the

potential endogeneity of excess reserves, aggregate policies and Federal funds trades. First, the

instruments for IOER and primary credit rate are the cumulative monetary policy shocks (policy

news shocks and Federal funds rate shocks) over past 4 quarters, which are obtained from Nakamura

& Steinsson (2018).5 Second, the instrument for the aggregate excess reserves is the one-period

lag of 4-quarter change in aggregate excess reserves to aggregate bank assets ratio. Third, the

instrument for individual excess reserves is one-period lag of individual excess reserves. For the

instruments of interaction terms, we use the interactions between the corresponding instruments

mentioned above.

The results of probit regressions are shown in Table 3, where we report three groups of estma-

tion: column (1) and (2) reports the standard Probit estimation, Column (3) and (4) report the

5The original sample period of the policy shocks end in 2014, and Acosta & Saia (2020) update the shocks to
2019. We use the later in our estimation.
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estimation of a random effects panel probit model, and column (5) and (6) report the estimation

of the instrumental-variable probit model. In all columns, the probability of intermediation trade

decreases in IOER and the aggregate excess reserves. The coeffi cients are significant and robust.

The primary credit rate also negatively impacts the probability of intermediation trade, and the

coeffi cient is significant in the random effect estimator and IV tobit estimator. This implies that

the unconventional monetary policies have strong disintermediation effect on the intensive margin.

Moreover, by adding the interaction terms, we find that the impact of IOER and aggregate excess

reserves on the probability of intermediation trade can be heterogeneous across banks, but the signs

of the coeffi cients for the interaction terms are not consistent and robust across the columns.

The results of tobit regressions are reported in Table 4, where we also have three groups of

estimation. The main results of tobit regressions are similar to those of probit regressions. On

average, under a higher value of IOER, aggregate excess reserves and primary credit rate, banks are

less likely to do intermediation tradeS. The coeffi cients are significantly negative and robust across

columns. In summary, the estimation results of probit and tobit regressions imply significantly and

consistently negative effect of unconventional monetary policies on intermediation trade, which

reveals a strong disintermediation channel.

3.3 Effects on Net Borrowing of Fed Funds

Our second specification relates the net Fed funds borrowing to a bank’s excess reserve balances,

IOER and aggregate reserve balances. We estimate the following equation on the sample of banks

that hold positive total reserves at the Fed account and trade Federal funds at least once in the

data sample:

ffnet_assetsi,t = αi + ηyr(t) + β0exres_assetsi,t + β1ioert + β2ioert × exres_assetsi,t (2)

+β3agg_exres_assetst + β4agg_exres_assetst × exres_assetsi,t

+β5dwt + β6dwt × exres_assetsi,t + γ · controlsi,t + εi,t,

where i represents a bank and t denotes the last business day of a quarter. The parameters αi

and ηyr(t) represent the bank fixed effects and year fixed effects. The control variables controlsi,t

include both the bank-level controls and the aggregate controls mentioned above. This regression

examines how the level of IOR and aggregate excess reserves impact individual banks’ net Fed

funds borrowing. By adding the interaction between the policy variables and individual excess

reserve balances, we also investigate the potential heterogeneous effects of the monetary policies

across banks.

Colums (1) to (3) of Table 5 report the results of OLS estimation. Column (1) does not include

the interaction terms, thus estimates the average effect of the monetary policies on banks’net Fed

funds borrowing. Column (2) reports the estimation of our baseline specification (2), while Column
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(3) additionally controls the quarter fixed effects. We have the following findings. First, the coef-

ficient of individual excess reserves, β0, is significantly negative across all the columns. It implies

that banks with more excess reserves borrow less Fed funds. Second, the OLS estimation shows

significant and robust heterogeneous effects of monetary policies on net Fed funds borrowing. In

particular, the coeffi cients of the interaction between IOR and individual excess reserves, β2, and

the interaction between the aggregate excess reserves and individual excess reserves, β4, are both

positive. Moreover, the coeffi cient of the interaction between primary credit rate and individual

excess reserves, β6, is negative. It means that for banks with suffi ciently high reserve balances,

their net borrowing increases in IOR and the aggregate excess reserves, and decreases in primary

credit rate. On the other hand, for banks with suffi ciently low reserve balances, their net borrowing

decreases in IOR and aggregate excess reserves, and increases in primary credit rate. Since banks

with high (low) excess reserves are more likely to be net Fed funds lenders (borrowers), the esti-

mation results imply that a higher IOER and aggregate excess reserves impede the reallocation of

Fed funds from lender banks to borrower banks. On the other hand, a higher primary credit rate

enhances the reallocation of Fed funds.

Column (4) to (6) of Table 5 report the results of 2SLS estimation, where the specification of

each column corresponds to Column (1) to (3). The results are consistent with the OLS estimation.

In Column (4), we find that banks net Fed funds borrowing decreases in IOER, primary credit rate

and aggregate excess reserves on average. In Column (5) and (6), the coeffi cients of all interaction

terms are significant and consistent with the OLS estimation. Thus our estimation documents

robust negative effect of IOER and aggregate excess reserves as well as positive effect of primary

credit rate on Federal funds allocation. This verifies our second hypothesis.

4 A Search Model of Federal Funds Market

Overview. In this section we propose a theoretical framework for our analysis. The timing

and preferences of the framework follow Afonso & Lagos (2015b), but we endogenize the banks’

search intensity.6 A Federal funds market runs continuously from time 0 to T . A unit-measure

of banks starts the Federal funds market with idiosyncratic level of reserve balances, k0 ∈ K =

[kmin, kmax] ⊂ R, following a cummulative distribution F0. There is also a numéraire good, where

banks can consume and produce linearly at time T + ∆. Why do banks trade reserve balances?

Holding reserve balances kt at t yields a flow payoff u (kt) continuously from time 0 to T , and also

a terminal payoff U (kT ) at time T , which is affected by (unconventional) monetary policy and

reserve requirement, as we will see in the next section. Thus, banks with a higher maringal value

of reserves want to purchase reserves balances (Federal funds) and settle in numéraire later at time

6We also allow reserve balances being divisible rather than discrete.
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T+∆.7 However, trading in the Federal funds market is subject to search frictions. In particular, it

takes time for a bank to find but a random counterparty such that the evolution of reserve balances

follows a jump process:

kt = k0 +
∑
tn≤t

qtn , (3)

where tn is the Poisson time of finding the n-th counterparty, from whom the bank purchases qtn
(sells if negative) units of reserves balances. As we will see, the search friction is essential to generate

the dispersion of Federal funds rates, slow trades, and intermediation we observe in practice.

Search. Time-varying contact rate is an important feature of the Federal funds market. Before

the Great Recession, most of the Federal funds trades happened in the late afternoon, which suggests

that search intensity is higher when t is close to T . Time-varying search intensity also suggests that

Federal funds market could be vulnerable to gridlock, which is captured by the search externality

of the matching function.

In the model, a pair of banks is matched at the Poisson arrival rate m (εt, ε
′
t) at t, where εt and

ε′t are their search intensities.
8 We normalize that ε ∈ [0, 1] with m (0, 0) = λ0, m (1, 0) = λ1, and

m (1, 1) = λ. We assume that the matching function is symmetric, increasing, supermodular, and

additive in counterparty’s search intensity such that

m
[
ε, αε′ + (1− α) ε′′

]
= αm

(
ε, ε′

)
+ (1− α)m

(
ε, ε′′

)
. (4)

Define the search profile of all k-banks as εt = {εt (k)}k∈K. By additivity, a bank with seach
intensity εt matches some counterparties at the rate m (εt, ε̄t), where ε̄t ≡

∫
εt (k′) dFt (k′) is the

average search intensity of banks at t. It captures the search complementarity effect.

Our leading examples are m (ε, ε′) = λ0 + (λ− λ0) (ε+ ε′) /2 and m (ε, ε′) = λ0 + (λ− λ0) εε′.9

Some matches are “free”, which arrive at the rate λ0. Both examples capture the fact that a bank

can search for a bank or be found by others. The former assumes that the likelihoods of finding

a bank and being found are independent, each proportional to the bank’s and the counterparty’s

search intensity, respectively. The latter assumes that the likelihoods of finding a bank and being

7Following the terminology in Call Reports, we use the terms Federal funds purchased (sold) and reserve balances
borrowed (lent) interchangeably.

8For readers not familar with the Poisson model, the probabality that a bank exerting a contingent plan of search
intensity {εt}Tt=0 until its next trade will find a counterparty bank within τ units of time is

Pr {t1 ≤ τ} = 1− exp
{
−
∫ τ

0

∫
j∈[0,1]

m
(
εt, ε

j
t

)
djdt

}
.

9The general form of the matching function is

m
(
ε, ε′

)
= (λ− 2λ1 + λ0) εε

′ + (λ1 − λ0)
(
ε+ ε′

)
+ λ0.

See Appendix C.1 for derivations.
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found are the same, which are proportional to both the bank’s and the counterparty’s search

intensity.

Preferences. The individual bank’s problem is given by

max
ε
Eε

∫ T

0
e−rtu (kt) dt+ e−rTU (kT )−

∑
n=1,2,...

[
e−rtnχ (εtn , qtn) + e−r(T+∆)Rtn

] , s.t. (3).

(5)

The terms in the brackets of (5) are the expected discounted payoff flow from holding reserves, the

discounted terminal payoff of holding reserves at time T , the discounted cost of trading qtn units

of Federal funds at search intensity εtn with the n-th counterparty at tn, and the repayment Rtn in

numéraire to settle these trades. The dynamics of reserve balances (kt) is given by (3). The amount

of Federal funds traded and its repayment are determined by Nash bargaining protocol when the

bank finds its n-th counterparty at tn. The bank’s problem is to choose a contingent plan of search

intensity (ε) to maximize the expected discounted payoff (5).

The payoff functions, u and U , are positive, continuously differentiable, increasing, concave and

at least one of them is strictly concave. The cost function χ (ε, q) is positive, continuously differen-

tiable in both arguments, convex in q, complementary in ε and q, and satisfies Inada condition in

q. We normalize that χ (0, q) = χ (ε, 0) = 0, and assume symmetry over q, i.e. χ (ε, q) = χ (ε,−q).
Note that Afonso & Lagos (2015b) is the special case of χ (ε, q) = 0. The cost function captures the

fact that it is increasingly costly to trade fast and large in the Federal funds market. Notice that

the cost is incurred when the match and trade happen. As we will see later, this feature generates

a tension between cost shifting and seach complementarity.

Bargaining. Once a bank meets a counterparty, the terms of trade (qt, Rt) are negotiated accord-

ing to the Nash bargaining protocol. Denote Vt (k) as the maximal attainable continuation value

of a bank holding k units of reserve balances at t.10 For this bank, the trade surplus of purchasing

q units of reserve balances with R units of numéraire repayment from its counterparty at t is

Bt (k, q, R, ε) ≡ Vt (k + q)− e−r(T−t+∆)R− χ (ε, q)− Vt (k) .

By symmetry, dentoe Bt (k′,−q,−R, ε′) as the trade surplus of its counterparty whose reserves
balance before trade is k′. The terms of trade solve the following Nash bargaining problem:

max
q,R∈R

k+q,k′−q∈K

Bt (k, q, R, ε)Bt
(
k′,−q,−R, ε′

)
. (6)

10While the terminology is standard, to be precise, the value function is defined as

Vt (k) ≡ ertmax
ε
Eεt


∫ T

t

e−rzu (kz) dz + e−rTU (kT )−
∑
tn≥t

[
e−rtnχ (εtn , qtn) + e−r(T+∆)Rtn

] given kt = k.
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Denote the solution as qt = qt (k, k′, ε, ε′) and Rt = Rt (k, k′, ε, ε′). Thus, for all k ∈ K and t ∈ [0, T ],

the value function is given by

Vt (k) = Eε


∫ min{t+1,T}−t

0 e−rτu (k) dτ + 1t+1>T e
−r(T−t)U (k)

+1t+1≤T e
−r(t+1−t)

∫ 
Vt+1

[
k + qt+1

[
k, k′, εt+1 , εt+1 (k′)

]]
−χ
[
εt+1 , qt+1

[
k, k′, εt+1 , εt+1 (k′)

]]
−e−r(T+∆−t+1)Rt+1

[
k, k′, εt+1 , εt+1 (k′)

]
 m[εt+1 ,εt+1 (k′)]

m(εt+1 ,ε̄t+1)
dFt+1 (k′)

 ,

(7)

where

qt
(
k, k′, ε, ε′

)
= arg max

q

{
Vt (k + q) + Vt

(
k′ − q

)
− χ (ε, q)− χ

(
ε′, q

)}
,

e−r(T+∆−t)Rt
(
k, k′, ε, ε′

)
=

1

2

{
Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]
Vt (k′)− Vt [k′ − qt (k, k′, ε, ε′)] + χ [ε′,−qt (k, k′, ε, ε′)]

}
,

and t+1 is the random time of matching the next counterparty, arriving at the rate m (εt, ε̄t) . The

costs of search intensities, χ (ε, q) and χ (ε′, q), are shared in the bargaining; it creates the cost

shifting effect.

Define the Federal funds rate as ρt (k, k′, ε, ε′) ≡ Rt (k, k′, ε, ε′) /qt (k, k′, ε, ε′) − 1. Note that

the bargaining solution is symmetric, i.e., qt (k, k′, ε, ε′) = −qt (k′, k, ε, ε′) = −qt (k′, k, ε′, ε) =

qt (k′, k, ε′, ε) and ρt (k, k′, ε, ε′) = ρt (k′, k, ε′, ε). Denote the joint surplus as

St
(
k, k′, ε, ε′

)
≡ Vt

[
k + qt

(
k, k′, ε, ε′

)]
− Vt (k)− χ

[
ε, qt

(
k, k′, ε, ε′

)]
+Vt

[
k′ − qt

(
k, k′, ε, ε′

)]
− Vt

(
k′
)
− χ

[
ε′,−qt

(
k, k′, ε, ε′

)]
.

Due to the linear preferences in R, banks split the joint surplus evenly such that

Bt
[
k, qt

(
k, k′, ε, ε′

)
, Rt

(
k, k′, ε, ε′

)
, ε
]

= Bt
[
k′,−qt

(
k, k′, ε, ε′

)
,−Rt

(
k, k′, ε, ε′

)
, ε′
]

= 0.5St
(
k, k′, ε, ε′

)
.

Given the assumption on the cost function χ, the following lemma characterizes the property of

the bargaining solution.11

Lemma 1 (i). St (k, k′, ε, ε′) and |qt (k, k′, ε, ε′)| are both decreasing in ε and ε′. Moreover, suppose
Vt (k) is weakly concave and twice differentiable, then St (k, k′, ε, ε′) is supermodular in ε and ε′.

(ii). If Vt (k) is (strictly) concave, then St (k, k, ε, ε′) = 0, and St (k, k′, ε, ε′) is (strictly) de-

creasing in k for all k < k′ and (strictly) increasing in k for all k > k′. We have qt (k, k′, ε, ε′) > 0

and is decreasing in k and increasing in k′.

Value and distribution. Given the search profile of banks and the trade surplus function, the

value function, Vt (k), of (7) can be recursively expressed as the solution the following Hamiltonian-

11The proofs of all the propositions and lemmas are provided in Appendix C.
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Jacob-Bellman (HJB) equation12

rVt (k) = V̇t (k)+u (k)+ max
εt∈[0,1]

∫
1

2
St
[
k, k′, εt, εt

(
k′
)]
m
[
εt, εt

(
k′
)]
dFt

(
k′
)
, where VT (k) = U (k) .

(8)

The initial value V0 (k0) equals (5).

Given the search profile and the bargaining solution, by counting the inflow and outflow, the

balance distribution satisfies the following Kolmogorov forward equation (KFE)13

Ḟt (kw) =

{ ∫
k>kw

∫
m [εt (k) , εt (k′)] 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k)

−
∫
k≤kw

∫
m [εt (k) , εt (k′)] 1 {k + qt (k, k′) > kw} dFt (k′) dFt (k)

}
, given F0 (kw) .

(9)

The intuition of the KFE is as follows. Consider two groups of banks: those holding not greater

than kw units of reserve balances I− (kw) and the rest I+ (kw), so the measure of I− (kw) at t is

Ft (kw). The first line of (9) is the inflow rate to I− (kw) post-trade from I+ (kw) pre-trade; the

second line of (9) is the outflow rate from I− (kw) pre-trade to I+ (kw) post-trade.

4.1 Equilibria

The terms of trade and choices of search intensity interact with the dynamics of reserve distribution

in the Federal funds market. The feedback mechanism is summarized by the system of forward-

looking value functions, Vt, and backward-looking distribution functions, Ft. We define a symmetric

subgame perfect equilibrium as follows.

Definition 1 An equilibrium consists of {Vt (k) , εt (k) , Ft (k) , qt (k, k′) , ρt (k, k′)}k,k′∈K,t∈[0,T ] such

that,

(a) given {εt (k′) , Ft (k′) , qt (k, k′) , ρt (k, k′)}k,k′∈K,t∈[0,T ], the value function Vt (k) solves the

bank’s maximization problem (8) with εt = εt (k) at all t;

(b) given {Vt (k)}k∈K,t∈[0,T ], qt (k, k′) and ρt (k, k′) solve the Nash bargaining problem (6);

(c) given {εt (k) , qt (k, k′)}k,k′∈K,t∈[0,T ], the distribution function Ft (k) satisfies (9).

Multiplicity. Even the equilibrium exists, yet to prove, there are multiple equilibria for, at

least, three reasons. First, due to the dynamic complementarity, it is well-known that a system of

forward-backward differential equations can have multiple solutions.14 Second, due to the search

complementarity (m is supermodular), the higher search intensities put by other banks the higher

12For readers not familiar with the HJB equation, we derive (8) in the online Appendix C.3. The discretized version
of (8) without search cost or transaction cost is Proposition 1 of Afonso & Lagos (2015b).
13For readers not familiar with the KFE, we derive (9) in the online Appendix C.3. When k is discrete, Ft (k) is

probability mass function shown in Proposition 2 of Afonso & Lagos (2015b).
14For example, consider a simple system of forward-backward ODEs:

ẏ (t) = −x (t) , where y (2π) = 0,
ẋ (t) = y (t) , where x (0) = 0,
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marginal propensity to match. Third, due to the cost shifting (S is supermodular), the higher

search cost shared by other banks the lower the marginal cost of search intensity, as less Federal

funds are traded. To see it, using (8), the equilibrium search profile is a fixed point function to the

following functional:

Γt (εt) (k) ≡ arg max
ε∈{0,1}

{∫
St
[
k, k′, ε, εt

(
k′
)]
m
[
ε, εt

(
k′
)]
dFt

(
k′
)}

. (10)

Denote the set of fixed points to Γt as Ω (St, Ft) ⊆ [0, 1]K, i.e., εt (k) = Γt (εt) (k) for all εt ∈
Ω (St, Ft). To proceed we need some notions of lattice theory. Consider two search profiles ε (k)

and ε′ (k). Define a partial order �s such that ε �s ε′ if ε (k) > ε′ (k) for all k ∈ K. A lattice

{L,�s} is complete if for any ε, ε′ ∈ L ⊆ [0, 1]K, we have either ε �′s ε or ε′ �s ε. Suppose St
satisfies the conditions for supermodularity in (ε, ε′) as in Lemma 1. The following proposition

provides a suffi ciently condition for complete lattice.

Proposition 1 Ω (St, Ft) is non-empty. Suppose the cost function χ (ε, q) is separable, i.e. χ (ε, q) =

κ (ε) χ̃ (q). Define θκ (ε) ≡ κ′ (ε) ε/κ (ε), θm (ε) ≡ m12 (ε, ε′) ε/m2 (ε, ε′) and X (k, k′, ε, ε′) ≡
St (k, k′, ε, ε′) / {(κ (ε) + κ (ε′)) χ̃ [qt (k, k′, ε, ε′)]}. Given St and Ft,{Ω (St, Ft) ,�s} is a complete
lattice if X (k, k′, ε, ε′) ≥ 1 and

θκ (ε) ≤ θm (ε) .

In other words, for any two equilibrium search profiles ε and ε′, they can always be ranked

by Proposition 1 such that it is either εt (k) ≥ ε′t (k) for all k, or εt (k) ≤ ε′t (k) for all k. Define

the largest equilibrium profile of Ω (St, Ft) as εt (k) if εt (k) �s ε′t (k) for all ε′t (k) ∈ Ω (St, Ft).

Notice that no-search equilibrium exists even when there is no search cost (χ = 0), as a result of

coordination failure. Although the cardinality of Ω (St, Ft) is potentially large, the supermodularity

of the search game implies a lattice structure to classifiy the equilibria for analysis. To deal with

multiplicity, most of time we will focus on the following equilibrium refinement.

Definition 2 An equilibrium satisfies the defreezing refinement if there is no other equilibrium

with a strictly higher average search intensity of banks. If Ω (St, Ft) is a complete lattice, then an

equilibrium satisfies the defreezing refinement is also the largest equilibrium profile of Ω (St, Ft) for

all t ∈ [0, T ].

which has a continuum of solutions {x (t) = A sin t, y (t) = A cos t}. In macroeconomics, the literature of equilibrium
indeterminacy after the seminar work of Benhabib & Farmer (1994) has illustrated various possibilities of multiplicity
in standard neo-classical growth models consisting of, typically, a system of forward-looking (the capital accumulation)
and backward-looking differential equations (the Euler equation). Here our economy deals with a more complex system
of partial different equations: the state variable is the distribution of reserves, instead of capital, thus the dimension
is infinite, instead of one.
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The defreezing refinement addresses the multiplicity due to matching complementarity. No-

search equilibrium is always eliminated by the defreezing refinement if other equilibria exist. Al-

though the uniqueness of the equilibrium is not guaranteed under the defreezing refinement due to

the forward-backward differential equation system, we show in Section 5 that under the defreezing

refinement, we are able to obtain a class of models with closed-form solutions. The closed-form

model allows for comparative statics that are consistent with the empirical evidence.

4.2 Effi ciency

The equilibrium is not necessarily effi cient, even the one that satisfies the defreezing refinement.

Consider a social planner that dictates search decision {εpt (k)} and bilateral exchange of reserve
balances {qpt (k, k′)} to maximize the discounted sum of the utility flows of banks with equal weights,
taking as given the search frictions and transaction costs.

Definition 3 A constrained effi cient allocation consists of {εpt (k) , F pt (k) , qpt (k, k′)}k,k′∈K,t∈[0,T ]

that solves

W = max

{ ∫ T
0 e−rt

∫
u (k) dF pt (k) dt+ e−rT

∫
U (k) dF pT (k)

−
∫ T

0

∫ ∫
e−rtχ [εpt (k) , qpt (k, k′)]m [εpt (k) , εpt (k′)] dF pt (k′) dF pt (k) dt

}
(11)

subject to the law of motion of reserves

Ḟ pt (kw) =

{ ∫
k>kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) ≤ kw} dF pt (k′) dF pt (k)

−
∫
k≤kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) > kw} dF pt (k′) dF pt (k)

}
, (12)

where F p0 (kw) = F0 (kw).

The constrained effi cient allocation {εpt (k) , qpt (k, k′)} maximizes the Hamiltonian. Denote

V p
t (k) as the co-state to dF pt (k), the Hamiltonian is given by

Hpt ≡
∫
u (k) dF pt (k)−

∫ ∫
χ
[
εpt (k) , qpt

(
k, k′

)]
m
[
εpt (k) , εpt

(
k′
)]
dF pt

(
k′
)
dF pt (k) (13)

+

∫ ∫
m
[
εpt (k) , εpt

(
k′
)] {

V p
t

[
k + qpt

(
k, k′

)]
− V p

t (k)
}
dF pt

(
k′
)
dF pt (k)

+

∫ ∫
ηt
(
k, k′

) [
qpt
(
k, k′

)
− qpt

(
k′, k

)]
dF pt

(
k′
)
dF pt (k) ,

where ηt (k, k′) is the multiplier to the bilateral trade constraint qpt (k, k′) + qpt (k′, k) = 0. The

evolution of the co-state solves15

rV p
t (k) = V̇ p

t (k) + u (k) (14)

+

∫ {
V p
t [k + qpt (k, k′)] + V p

t [k′ − qpt (k, k′)]− V p
t (k)

−V p
t (k′)− χ [εpt (k) , qpt (k, k′)]− χ [εpt (k′) ,−qpt (k, k′)]

}
m
[
εpt (k) , εpt

(
k′
)]
dF pt

(
k′
)
,

15We derive (14) in the Appendix C.5.
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with V p
T (k) = U (k). The optimal allocation {qpt (k, k′)}k,k′∈K satisfies

qpt
(
k, k′

)
= arg max

q

{
V p
t (k + q) + V p

t

(
k′ − q

)
− χ (εpt (k) , q)− χ

(
εpt
(
k′
)
,−q

)}
and the optimal search profile {εpt (k)}k∈K is a fixed point function to

εpt (k) = Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

{∫
Spt
(
k, k′, ε, εpt

(
k′
))
m
(
ε, εpt

(
k′
))
dF pt

(
k′
)}

,

where

Spt
(
k, k′, ε, ε′

)
= max

q

{
V p
t (k + q)− V p

t (k)− χ (ε, q)
+V p

t (k′ − q)− V p
t (k′)− χ (ε′,−q)

}
.

Note that the equilibrium HJB (8) for Vt (k) differs from the co-state HJB (14) since the gains

from bilateral trade in the co-state HJB is double of that in the equilibrium HJB. The following

proposition shows that in general the equilibrium allocation is not constrained optimal —the welfare

theorem is violated.

Proposition 2 (Ineffi ciency) Equilibrium is not generically constrained optimal. Equilibrium is

constrained optimal if χ = 0.

Afonso & Lagos (2015b) show that the welfare theorem holds when banks are homogeneous

(beyond initial balances); Proposition 2 shows it is no longer the case when there is search cost or

transaction cost. Üslü (2019) shows that the welfare theorem does not hold when banks are ex-

ante heterogeneous in, for example, payoff functions and contact rates, because of the composition

externality. Proposition 2 shows that even banks are ex-ante homogeneous, the welfare theorem

still does not hold when banks can choose their contact rates or when Federal funds trades are

subject to transaction cost.

4.3 Walrasian benckmark

To see the role of search intensity, consider the Walrasian benchmark where there is no search

fricton (λ0 =∞) and trades are organized in a competitive market. Banks are free to trade at any
t ∈ [0, T ], taking the competitive Federal funds rates ρwt as given. It will be useful to express the

bank’s problem in term of its value of reserve balances, at ≡ (1 + ρwt ) kt. The evolution of at is thus

given by

dat =
ρ̇wt

1 + ρwt
atdt+ dδt, (15)

where the first term is the appreciation of the reserve value due to the appreciation of Federal funds

rate and the second term, δt, is the value of Federal fund purchased up to t. Notice that we allow

dδt to be infinitesimal or lumpy. At T + ∆ the bank will settle the accumulated Federal funds
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purchased, which is δT . Similar to (5), given the path of competitive Federal funds rates {ρwt }, the
bank problem is given by

max
{δt}

E
{∫ T

0
e−rtu

(
at

1 + ρwt

)
dt+ e−rTU

(
aT

1 + ρwT

)
− e−r(T+∆)δT

}
, s.t. (15). (16)

Denote δt (a0) as the solution chosen at t by a bank that holds a0 units of reserve value at t = 0.

In the competitive equilibrium, ρwt clears the market clearing such that for all t

0 =

∫
δt [(1 + ρw0 ) k] dF0 (k) . (17)

Proposition 3 In the competitive equilibrium, we have

(a) ρwt = er∆
{
U ′ (K) +

[
er(T−t) − 1

] u′(K)
r

}
− 1;

(b) δt (a) = (1 + ρw0 )K − a for all t ∈ [0, T ] .

In the Walrasian benchmark, banks trade instantaneously at t = 0 such that every bank main-

tains K units of reserve balances throughtout the horizon. In the competitive equilibrium, the

Federal funds rate is decreasing over time, in order to compensate for the utility from holding

reserve. Also, notice that the Walrasian benchmark is the first-best allocation.

5 A class of closed-form models

This section develops a closed-form model based on the theoretical framework. This model provides

comparative statics that are consistent with our empirical evidence.

Preferences, monetary policy and regulation. We assume quadratic payoff functions, which

are given by

u (k) = −a2k
2 + a1k,

U (k) = −A2k
2 +A1k.

The matching function is given by

m
(
ε, ε′

)
= (λ− λ0) εε′ + λ0.

The cost function is given by

χ (ε, q) = κεq2.

The parameter κ captures various balance sheet costs of purchasing Federal funds in practice. For

instance, κ captures the regulatory cost of purchasing Federal funds by reducing the leverage ratio

and liquidity coverage ratio, as required by the Basel III regulation. Moreover, Dodd-Frank act
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mandates FDIC to widen the assessment base of its deposit insurance premium to bank’s consoli-

dated total assets (previously, the assessment base consisted of the domestic deposit only). For the

reserves lenders (q < 0), selling Federal funds will not the size of their total assets (substituting

the liability of Federal Reserve Banks with the liability of other banks). For the reserve borrow-

ers (q > 0), purchasing Federal funds increases the size of their total assets (in term of reserves

balances) so they pay additional deposit insurance premium.

Unconventional monetary policy in practice consists of paying IOER and central bank liquidity

facility like primary dealer credit and, traditionally, discount window. Basel III regulation also en-

courages the holdings of HQLA like reserves. To model these, we assume that there are k+K, k−K ∈
K such that U ′ (k+K) = 1 + iER + γ and U ′ (k−K) = 1 + iDW + γ, where iER the interest rate

on excess reserve and, iDW , where iDW > iER, is the interest rate of the liquidity facility, and

γ is the regulatory benefit of holding reserve balances. In practice, k+K is the level of reserves

suffi ciently excess the reserve requirement to collect the IOER; k−, where k− < k+, is the level of

reserves suffi ciently below the reserve requirement such that the bank is penalized by, for example,

the discount window rate. The simplest differentiable specification capturing the above is given by

A2 ≡
iDW − iER

2K (k+ − k−)
, A1 ≡ 1 +

k+i
DW − k−iER
k+ − k−

+ γ.

Under the above specification, we first guess (and verify later) that the value function admits a

closed-form solution, which is quadratic in k but with time-varying coeffi cients.

Bargaining solution. Given a quadratic value function, the bargaining solution is given by

qt
(
k, k′, ε, ε′

)
=

1−
[
1− V ′′t (k) + V ′′t (k′)

2κ (ε+ ε′)

]
︸ ︷︷ ︸
precaution-speed trade-off

−1


k′ − k

2︸ ︷︷ ︸
effi cient bilateral trade

, (18)

1 + ρt
(
k, k′, ε, ε′

)
= er(T+∆−t)︸ ︷︷ ︸

time cost

 V ′t (k) + V ′t (k′)

2︸ ︷︷ ︸
sharing marginal valuation

+ κ
ε′ − ε

2
qt
(
k, k′, ε, ε′

)
︸ ︷︷ ︸

speed premium (discount)

 . (19)
In Afonso & Lagos (2015b), the meeting banks exchange the effi cient trade size k′−k

2 and leave

with the same post-trade reserve balances. Moreover, due to the equal bargaining power, they trade

at the price equal to the average of their marginal valuations of reserves. However, in the existence

of transaction cost and endogenous search intensity, the bilateral trade size is less than the effi cient

level. The trade size is decreasing in κ and the meeting banks’search intensity ε and ε′, since a

higher κ, ε and ε′ imply higher marginal cost of transaction. The effect of search intensity on trade

size captures the precaution-speed trade-off. With a higher search intensity, banks are able to find
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counterparties faster and also more costly. Thus they respond by covering orders with smaller size

in each transaction.

At the same time, the endogenous search intensity also induces a speed premium or discount of

the bilateral Fed funds rate, which is similar to Üslü (2019). The premium is proportional to the

trade size and the difference in the search intensities between the counterparties. In the meetings

with k′ > k and ε′ > ε, or k′ < k and ε′ < ε, the seller bank searches faster than the buyer bank.

This generates a positive speed externality for the buyer while the seller pays a higher cost. The

Nash bargaining creates a cost shifting from seller to buyer and the bilateral Fed funds rate is

charged at a premium. On the other hand, in the meetings with k′ > k and ε′ < ε, or k′ < k

and ε′ > ε, the buyer bank searches faster than the seller bank, creating a speed discount to the

bilateral Federal funds rate.

Search intensity. Given a quadratic value function, the equilibrium search intensity is the fixed

point of

Γt (εt) (k) ≡ arg max
ε∈[0,1]


∫ [

k′ − k
2

V ′′t (k)

]2 m (ε, εt (k′))

κ [ε+ εt (k′)]︸ ︷︷ ︸
search effi ciency

[
1− V ′′t (k) + V ′′t (k′)

2κ [ε+ εt (k′)]

]
︸ ︷︷ ︸
precaution-speed trade-off

−1

dFt
(
k′
)
 ,

(20)

Using Proposition 1, {Ω (St, Ft) ,�s} is a complete lattice since

X
(
k, k′, ε, ε′

)
= 1− V ′′t (k) + V ′′t (k′)

2κ (ε+ ε′)
≥ 1,

and

θκ (ε) = θm (ε) = 1.

Thus, the equilibrium search profile can be ranked.

Proposition 4 (Multiplicity) εt (k) = 0 ∀k is always an equilibrium search profile. Also, given

Vt and Ft, the number of equilibrium search profiles at t, i.e., |Ω (St, Ft)|, is greater than or equal
to 1. When |Ω (St, Ft)| > 1, εt (k) = 1 ∀k is the largest equilibrium search profiles.

We refer the smallest equilibrium search profile εt (k) = 0 as the frozen equilibrium. Similarly,

we refer the largest equilibrium search profile, εt (k) = 1, if exists, as the most liquid equilibrium.

Verification. The following proposition verifies that the value function must be quadratic.
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Proposition 5 (Closed form) The value function of the largest equilibrium search profle admits

a unique specification Vt (k) = −Htk
2 + Etk +Dt, where

Ḣt = rHt − a2 +
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where HT = A2; (21)

Ėt = rEt − a1 +
K

2

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where ET = A1; (22)

Ḋt = rDt −
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt

(
k′
)
, where DT = 0. (23)

The largest equilibrium search profile is εt (k) = εt ∈ {0, 1}. The Federal funds purchased qt (k, k′, ε, ε′)

and the Federal funds rate ρt (k, k′, ε, ε′) are given by

qt
(
k, k′, ε, ε′

)
=

Ht (k′ − k)

κ (ε+ ε′) + 2Ht
, (24)

1 + ρt
(
k, k′, ε, ε′

)
= er(T+∆−t)

[
Et −Ht

(
k + k′

)
− κ (ε− ε′)

2
qt
(
k, k′, ε, ε′

)]
. (25)

5.1 The most liquid equilibrium

In the rest of this section, we focus on the largest equilibrium, which is referred as the most liquid

equilibrium.

Proposition 6 Define

η ≡ κ
[

λ

2 (λ− λ0)
− 1

]
.

The equilibrium search profile in the most active equilibrium is given by

εt (k) =

{
1, if V ′′t (k) ≤ −2η;
0, otherwise.

(26)

Given Proposition 6, the following lemma solves the path of equilibrium search profile in the

most liquid equilibrium.

Lemma 2 Define

µ1 ≡ 1

2r + λ
2

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + λ)

]0.5
}
,

µ2 ≡ 1

2r + λ
2

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + λ)

]0.5
}
,

τ1 (H;A, u) ≡ u−
(κ+ µ1) log

(
A−µ1
H−µ1

)
− (κ+ µ2) log

(
A−µ2
H−µ2

)
(
r + λ

4

)
(µ1 − µ2)

,

J (t;A, u) ≡ a2

r + λ0
4

+

(
A− a2

r + λ0
4

)
e
−
(
r+

λ0
4

)
(u−t)

,

τ2 (H;A, u) ≡ u+
1

r + λ0
4

log

1− H −A
a2

r+
λ0
4

−A

 .
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(a). Suppose A2 ≥ η.
(a-i). If a2 <

(
r − λ

4 + λ0
2

)
η and τ1 (η;A2, T ) > 0, then we have

εt =

{
1, if t ≥ τ1 (η;A2, T ) ;
0, otherwise.

(27)

Ht =

{
τ−1

1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;
J [t; η, τ1 (η;A2, T )] , otherwise.

(28)

(a-ii). Otherwise, we have εt = 1 for all t ∈ [0, T ] and Ht = τ−1
1 (t;A2, T ).

(b). Suppose A2 < η.

(b-i). If a2 >
(
r + λ0

4

)
η and τ2 (η;A2, T ) > 0, then we have

εt =

{
0, if t > τ2 (η;A2, T ) ;
1, otherwise.

(29)

Ht =

{
J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;

τ−1
1 (t; η, τ2 (η;A2, T )) , otherwise.

(30)

(b-ii). Otherwise, we have εt = 0 for all t ∈ [0, T ] and Ht = J (t;A2, T ).

The above lemma shows that the path of equilibrium search intensity depends on the boundary

value A2, which is a function of the unconventional monetary policies
{
iER, iDW ,K

}
. The Federal

funds market is not frozen (εt = 1) when A2 is suffi ciently large.

Having solved the time path of Ht, we are able to characterize the path of equilibrium reserve

distribution as in the following lemma.

Lemma 3 Given Ht, the reserve distribution under the largest equilibrium search profiles solves

the following PDE:

Ḟt (k) = m (εt, εt)

[∫
Ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
dFt

(
k′
)
− Ft (k)

]
, (31)

given the initial condition F0 (k). Denote the n-th moment of the reserve distribution at time t as

Mn,t ≡
∫
kndFt (k). The moment function is given by the following ODE:

Ṁn,t = m (εt, εt)

[
n∑
i=0

Cin
(Ht)

n−i (Ht + 2κεt)
i

2n (Ht + κεt)
n Mn−i,tMi,t −Mn,t

]
, (32)

with M0,t = 1, M1,t = K and

M2,t = K2 +
(
M2,0 −K2

)
exp

[
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz

]
. (33)

Thanks to Fourier transform, the model allows for an analytical expression for the paths of

moments of the reserve distribution. In particular, equation (33) implies that the variance of the

reserve distribution converges to zero at the speed of m (εt, εt)
Ht(Ht+2κεt)

2(Ht+κεt)
2 , which is endogenously

determined. In particular, a higher Ht implies a faster speed of convergence.
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5.2 Positive Implications on Liquidity

The closed-form solution allows us to obtain a set of measures on liquidity in analytical form. We

list these measures in this section for possible quantitative analysis. The derivations of all the

measures are provided in the Appendix .

Price impact. The price impact of a trade measures how much the Federal fund rate changes in

response to a given Federal fund purchased. The higher the price impact, the more expensive to

borrow reserve balances, reflecting lower liquidity. In the Walrasian benchmark, the price impact

is always zero. Substituting the equilibrium search intensity in our model, the Federal fund rate

can be log-linearized as

ρt (k, q) ∼= r (T + ∆− t)︸ ︷︷ ︸
time effect

+ log V ′t (k)︸ ︷︷ ︸
bank fixed effect

− θV,t (k)

1− ωt︸ ︷︷ ︸
price impact

q

k
, (34)

where θV,t (k) is the elasticity of value function and ωt is the equilibrium precaution-speed trade-off:

θV,t (k) ≡ −V
′′
t (k) k

V ′t (k)
,

ωt ≡
(

1− V̄ ′′t
κεt

)−1

.

The price impact depends on the ratio between the elasticity of value function and the precaution-

speed trade-off.

Return reversal. If the Federal funds market is liquid, the price impact is transistory and the

Federal fund rate will swiftly reverse to the mean. The return reversal measures how swift the

Federal fund rate stablizes disturbances. In the Walrasian benchmark, the return reversal is always

infinity. In our model, the dynamics of the Federal fund rate is given by

d

dt

[
ρt
(
k, k′

)
− %t

]
= −

[
a2

Ht
− 1

4

Ht

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
︸ ︷︷ ︸

return reversal

[ρt (k, q)− %t] ,

where %t is the average Federal funds rate defined by %t ≡
∫ ∫

ρt (k, k′) dFt (k′) dFt (k). Note that

the value of V ′′t (k) and the search intensity both control the speed of return reversal.

Price dispersion. The law of one price tends to apply when the Federal fund market is extremely

liquid. The price dispersion measures the prevalence of arbitrage opportunity arise of the search

friction. In the Walrasian benchmark, the price dispersion is always zero. In our model, the price

dispersion is given by
σρ,t
σk,t︸︷︷︸

price dispersion

=
√

2er(T+∆−t)Ht,
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where σρ,t is the standard deviation of Federal fund rate and σk,t is the standard deviation of

reserve balances. Since the Federal fund rates are more dispersed when banks hold more dispersed

reserve balances, we normalize the price dispersion with the standard deviation of reserve balances.

Intermediation markup. Recall that banks intermediate by purchasing Federal funds to sell.

Intermediation is not risk-free as the bank exposes itself to the risk of selling Federal funds at a

lower price than the purchasing price. The rate spread is the between the expected Federal fund

rate of the selling leg and the realized Federal fund rate of the purchasing leg:

∆ρ,t (k, q) ≡
∫
ρt
(
k + q, k′

)
dFt

(
k′
)
− ρt (k, q) .

The intermediation markup measures the change in the rate spread in response to the size of the

intermediation trade. In our model, the intermediation markup is given by

∂∆ρ,t (k, q)

∂q︸ ︷︷ ︸
intermediation markup

= er(T+∆−t) (2κεt +Ht) .

Utilization rate of trade opportunities. The total trade opportunities in this economy is

TOt =

∫
k

∫
k′≥k

k′ − k
2

dFt
(
k′
)
dFt (k) .

The utilitzation rate of trade opportunities measure how fast the trade opportunities are realized.

In Afonso and Lagos (2012), the utilization rate is the exogeneous matching rate. In our model,

the utilization rate is

URt =

∫
k

∫
k′≥km (εt, εt) qt (k, k′, εt, εt) dFt (k′) dFt (k)

TOt
=
Ht

[
(λ− λ0) ε2

t + λ0

]
κεt +Ht

.

Peak of trades. According to Proposition 5, the search decision is summarized by whether or

not the condition Ht ≥ η is satisfied.

Extensive margins. The measure of intermediating banks and the amount of intermediated

reserves are characterized by ODEs. Denote

P bt (k) ≡ Pr
{
qz
(
kz, k

′
z, εz, εz

)
> 0|kt = k, z ≥ t

}
,

P st (k) ≡ Pr
{
qz
(
kz, k

′
z, εz, εz

)
< 0|kt = k, z ≥ t

}
,

P
/0
t (k) ≡ Pr

{
qz
(
kz, k

′
z, εz, εz

)
6= 0|kt = k, z ≥ t

}
,

P intt (k) ≡ Pr
{
qz
(
kz, k

′
z, εz, εz

)
> 0, qz′

(
kz′ , k

′
z′ , εz′ , εz′

)
< 0|kt = k, z ≥ t, z′ ≥ t

}
,
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where P bt (k) is the probability that a k-bank will borrow reserves during the remaining time [t, T ],

and similiarly P st (k) is the corresponding probability of lending reserves, P
/0
t (k) the corresponding

probability of trading reserves, and P intt (k) the corresponding probability of intermediating reserves.

By the law of large number, P b ≡
∫
P b0 (k) dF (k) is the measure of banks that borrow in the

Federal funds market. Similarly, P s ≡
∫
P s0 (k) dF (k) is the measure of lending banks, P /0 ≡∫

P
/0

0 (k) dF (k) is the measure of trading banks, and P int ≡
∫
P int0 (k) dF (k) is the measure of

intermediating banks. By definition we have P int = P b + P s − P /0.
The laws of motion for the measures of trading banks, lending banks, borrowing banks, and

intermediating banks are given by

0 = Ṗ
/0
t (k) +mt

[
1− P /0t (k)

]
,

0 = Ṗ bt (k) +mt [1− Ft (k)]
[
1− P bt (k)

]
+mt

∫
k′≤k

[
P bt
[
k + qt

(
k, k′

)]
− P bt (k)

]
dFt

(
k′
)
,

0 = Ṗ st (k) +mtFt (k) [1− P st (k)] +mt

∫
k′≥k

[
P st
[
k + qt

(
k, k′

)]
− P st (k)

]
dFt

(
k′
)
,

0 = Ṗ intt (k) +mt

∫
k′≤k

[
P bt
[
k + qt

(
k, k′

)]
− P intt (k)

]
dFt

(
k′
)

+mt

∫
k′≥k

[
P st
[
k + qt

(
k, k′

)]
− P intt (k)

]
dFt

(
k′
)
,

where the boundary condition is given by P
/0
T (k) = P bT (k) = P sT (k) = 0. Note that only P

/0
t (k)

has a closed-form solution:

P
/0
t (k) = 1− exp

[
−
∫ T

t
m (εz, εz) dz

]
. (35)

Intensive margins. We define two measures of intensive margins for trade. The first measure is

the cumulated amount of absolute trade volume from time t to T for a bank with k units of reserve

balances at time t:

Qt (k) ≡ E
∑

ti∈[t,T ]

∣∣qti (kti , k′)∣∣ s.t. kt = k. (36)

The individual absolute trades follows

Q̇t (k) = −m (εt, εt)

[∫
k′

∣∣qt (k, k′)∣∣ dFt (k′)+

∫
k′
Qt
(
k + qt

(
k, k′

))
dFt

(
k′
)
−Qt (k)

]
. (37)

By summing up Qt (k) we can obtain the aggregate volume of absolute trades

Qt ≡
∫
Qt (k) dFt (k) .

The aggregate absolute trades follows the following ODE:

Q̇t = −m (εt, εt)
Ht

κεt +Ht

∫ ∫ |k′ − k|
2

dFt
(
k′
)
dFt (k) .

27



Thus the total trade volume is

Q =

∫ T

0

m (εt, εt)Ht

2 (κεt +Ht)

(∫ ∫ ∣∣k′ − k∣∣ dFt (k′) dFt (k)

)
dt.

The second measure is the net trade volume, i.e. the net Federal funds purchased. We define

the expected amount of net trades from time t to T of a bank holding k units of reserve balances

at time t as

Lt (k) ≡ E
∑

ti∈[t,T ]

qti
(
kti , k

′) s.t. kt = k.

The aggregate absolute net trade is defined as

L ≡
∫
|L0 (k)| dF0 (k) .

Note that the individual net trade admits a closed-form solution:

Lt (k) =

{
1− exp

[
−
∫ T

t

m (εz, εz)Hz

2 (κεz +Hz)
dz

]}
(K − k) . (38)

We can think of Lt (k) as the net trade volume of bank k who contacts bank K at intensity

m (εt, εt). Thanks to the closed-form solution, we also derive the comparative statics of Lt (k) on

policy parameters in Section 5.3. Given the individual net trade volume, the aggregate volume of

the absolute net trade is

L ≡
∫
|L0 (k)| dF0 (k) =

{
1− exp

[
−
∫ T

0

m (εt, εt)Ht

2 (κεt +Ht)
dt

]}∫
|K − k| dF0 (k) .

Given the aggregate volume of absolute trade and net trade, we define the level of intermediation

and fraction of intermediation as

Int = Q− L,

IntR =
Q− L
Q

.

Federal fund rate. The average Federal fund rate at τ is given by

1 + %t =

∫ ∫ [
1 + ρt

(
k, k′

)]
dFt

(
k′
)
dFt (k) = er(T+∆−t) [Et − 2HtK]

= er∆
[
1 + γ + iER +

k+ − 1

k+ − k−
∆i

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
,

where ∆i = iDW − iER is the policy rate spread. The range of the Federal funds rates is given by
1 + ρt (k, k′) ∈

[
1 + ρmin

t , 1 + ρmax
t

]
, where

1 + ρmin
t = er(T+∆−t) [Et − 2Htkmax] ,

1 + ρmax
t = er(T+∆−t) [Et − 2Htkmin] .
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5.3 Comparative Statics

This section provides the comparative statics of the closed-form solutions to policy and technology

parameters. We focus on the comparative statics where T is suffi ciently small, corresponding to

the fact that the Federal funds market is usually active during the last 2.5 hrs of a trading session.

Based on the characterization of equilibrium paths in Lemma 2, we discuss the comparative statics

of two cases. The first case is that banks search at the beginning of the trading session, and the

second case is that banks search when the time gets close to the end of trading session. The

following Proposition summarizes the comparative statics for the first case.

Proposition 7 Suppose A2 < η, a2 >
(
r + λ0

4

)
η, τ2 (η;A2, T ) > 0, and T is suffi ciently small.

The comparative statics of the length of search, τ2 (η;A2, T ), the amount of Federal funds purchased,

qt (k, k′), net Federal funds purchase, L0 (k) and its derivative L′0 (k), and the bilateral Federal fund

rates, ρt (k, k′), with respect to iER, iDW , κ, λ0, λ and K, are given by the following table

τ2 |qt| L0 (k) L′0 (k) ρt (k, k′)

iER − − sgn(K − k) − + (−) for k + k′ > (<) K̂t (k−)

iDW + + sgn(k −K) + + (−) for k + k′ < (>) K̂t (k+)

K − − + (−) for small (large) k − + (−) for k + k′ > (<) K̂t (ζt)
κ − − sgn(K − k) − + (−) for k + k′ < (>) 2K
λ0 − − sgn(K − k) − + (−) for k + k′ > (<) 2K
λ + + sgn(k −K) + + (−) for k + k′ < (>) 2K

where

ζt =

∫ T

t
er(T−s)

[
(λ− λ0) ε2

s + λ0

]
H2
s

4A2 (κεs +Hs)
ds,

K̂t (kw) = 2K·
kw − 1 + exp

[
−λ0

4

(
T − t− (τ2 (η;A2, T )− t)+)]−M (

(τ2 (η;A2, T )− t)+) exp (rT )

exp
[
−λ0

4

(
T − t− (τ2 (η;A2, T )− t)+)]−M (

(τ2 (η;A2, T )− t)+) exp (rT )
,

and

M (u) =
∂τ2 (η;A2, T )

∂A2

∫ τ2(η;A2,T )

τ2(η;A2,T )−u
e−rs

{(
r +

λ

4

)[
1− (κ+ µ1) (κ+ µ2)

(κ+Hs)
2

]}(
−Ḣs

)
ds,

and (x)+ ≡ max {x, 0}.

The following proposition summarizes the comparative statics for the second case.

Proposition 8 Suppose A2 ≥ η, a2 <
(
r − λ

4 + λ0
2

)
η, τ1 (η;A2, T ) > 0 and λ, λ0/λ and T are

suffi ciently small. The comparative statics of the length of search, T − τ1 (η;A2, T ), the amount

of Federal funds purchased, qt (k, k′), net Federal funds purchase, L0 (k) and its derivative L′0 (k),

and the Federal fund rates, ρt (k, k′), with respect to iER, iDW , κ, λ0, λ and K, are given by the

following table
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T − τ1 |qt| L0 (k) L′0 (k) ρt (k, k′)

iER − − sgn(k −K) + + (−) for k + k′ > (<) K̃t (k−)

iDW + + sgn(K − k) − + (−) for k + k′ < (>) K̃t (k+)

K − − + (−) for large (small) k + + (−) for k + k′ > (<) K̃t (ζt)
κ − − sgn(k −K) + + (−) for k + k′ < (>) 2K
λ0 − 0 sgn(K − k) − + (−) for k + k′ > (<) 2K
λ + − sgn(K − k) − + (−) for k + k′ > (<) 2K

where

ζt =

∫ T

t
er(T−s)

[
(λ− λ0) ε2

s + λ0

]
H2
s

4A2 (κεs +Hs)
ds,

K̃t (kw) = 2K ·
kw − M̃

(
T − τ1 − (t− τ1)+) exp (rT )− 1 {t < τ1} er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃
(
T − τ1 − (t− τ1)+) exp (rT )− 1 {t < τ1} er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

,

and

M̃ (u) =
λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

T−u
e−rs

Hs (2κ+Hs)

(κ+Hs)
2

(
−Ḣs

)
ds,

and (x)+ ≡ max {x, 0}.

The above propositions show that the comparative statics may differ in different cases and

depend on parameters. In particular, the comparative statics on the length of search are consistent

for the two cases. The length of search decreases in IOER and aggregate excess reserves, implying

the disintermediation effect on the extensive margin. However, there is a trade-off at the intensive

margin. The bilateral trade size when the search intensity is one is always smaller than the trade

size when the search intensity is zero. Thus a shorter length of search does not necessarily imply a

lower volume of transaction. The disintermediation effect on the intensive margin occurs only if the

reduction in trade size when the search intensity is one dominates. This is the case in Proposition

8. Note that in this case, banks’search intensity is one when the time is close to the end of the

market. This is consistent with the empirical observation that the daily Federal funds market

is usually active during 4pm to 6:30pm. Moreover, Proposition 8 also produces the comparative

statics of net Federal funds purchase that are consistent with the empirical evidence.

5.4 Constrained Effi ciency

In this section we discuss the constrained effi ciency of the closed-form model. The following propo-

sition characterizes the necessary conditions for the planner’s problem.

Proposition 9 A solution to the planner’s problem is a path for the distribution balances, F pt (k), a

path for the continuum of co-states associated with the law of motion for the distribution of balances,

Vp
t = {V p

t (k)}k∈K, a path for the individual search intensity profile {ε
p
t (k)}k∈K, and a path for the
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bilateral reallocation volume, {qpt (k, k′)}k,k′∈K. The necessary conditions for optimality are

rV p
t (k) (39)

= V̇ p
t (k) + u (k) + max

ε∈[0,1]

∫
k′

max
q∈R

k+q,k′−q∈K

{
V p
t (k + q)− V p

t (k)− χ (ε, q)
+V p

t (k′ − q)− V p
t (k)− χ (εpt (k′) ,−q)

}
m
(
ε, εpt

(
k′
))
dF pt

(
k′
)

for all (k, t) ∈ K× [0, T ], with

V p
T (k) = U (k) for all k ∈ K, (40)

with the path for F pt (k) given by

Ḟ pt (kw) =

{ ∫
k>kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) ≤ kw} dF pt (k′) dF pt (k)

−
∫
k≤kw

∫
m [εpt (k) , εpt (k′)] 1 {k + qpt (k, k′) > kw} dF pt (k′) dF pt (k)

}
, (41)

where F p0 (kw) = F0 (kw).

Note that the maximization problem in the planner’s HJB (39) is different from the counterpart

in the equilibrium, creating the ineffi ciency of the equilibrium allocation. The difference is due to

a composition externality typical of ex post bargaining environments, as discussed by Afonso &

Lagos (2015b). An individual bank internalizes only half the surpluses that her trades create. As a

result, she does not internalize fully the social benefit as well as social cost that arise from the fact

that having her in the current reserve holding k increases the meeting intensity of all other banks

with a bank of reserve k. Different from Afonso & Lagos (2015b), the post trading reserve holdings

of a bank k and a bank k′ is a weighted average of k and k′ due to the endogenous transaction

costs, and the weight is dependent on the composition externality.

Following the method we use in the equilibrium analysis, we guess and verify that

V p
t (k) = −Hp

t k
2 + Ept k +Dp

t . (42)

If the optimal reallocation rule qpt (k, k′) is non-zero, it satisfies

qpt
(
k, k′

)
=

Hp
t (k′ − k)

2Hp
t + κ [εpt (k) + εpt (k′)]

. (43)

The bilateral surplus is

Spt
(
k, k′

)
=

[Hp
t (k′ − k)]

2

2Hp
t + κ [εpt (k) + εpt (k′)]

. (44)

The optimal search intensity satisfies

Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

∫
k′
Spt
(
k, k′, ε, εpt

(
k′
))
m
(
ε, εpt

(
k′
))
dF pt

(
k′
)

(45)

Therefore the HJB (39) simplifies to

rV p
t (k) = V̇ p

t (k) + u (k) +
(Hp

t )
2

2

(λ− λ0) (ε̄pt )
2

+ λ0

κε̄pt +Hp
t

∫
k′

(
k − k′

)2
dF pt

(
k′
)
. (46)
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Matching coeffi cients yields

Ḣp
t = rHp

t − a2 +
(Hp

t )
2

2

(λ− λ0) (ε̄pt )
2

+ λ0

κε̄pt +Hp
t

, with Hp
T = A2. (47)

Ėpt = rEpt − a1 +K (Hp
t )

2 (λ− λ0) (ε̄pt )
2

+ λ0

κε̄pt +Hp
t

, with EpT = A1. (48)

Ḋp
t = rDp

t −
(Hp

t )
2

2

(λ− λ0) (ε̄pt )
2

+ λ0

κε̄pt +Hp
t

∫
k′

(
k′
)2
dF pt

(
k′
)
, with Dp

T = 0. (49)

Note that the initial-value problem (47) of Hp
t has the same functional form as that of Ht, except

that the parameters in the former are all doubled compared to the latter. Therefore, Lemma 1

and 2 also apply to Hp
t , and we can get the property of time path of reallocation that is similar to

Proposition 8. In particular, we define

ηp = κ

[
λ

2 (λ− λ0)
− 1

]
= η.

This implies that the switching point of the time path of reallocation has the same cutoff value of

H, but the cutoff time τ can be different since the “search intensity”is higher.

Lemma 4 Define

µp1 ≡ 1

2r + λ

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + 2λ)

]0.5
}
,

µp2 ≡ 1

2r + λ

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + 2λ)

]0.5
}
,

τp1 (H;A, u) ≡ u−
(κ+ µp1) log

(
A−µp1
H−µp1

)
− (κ+ µp2) log

(
A−µp2
H−µp2

)
(
r + λ

2

)
(µp1 − µ

p
2)

,

Jp (t;A, u) ≡ a2

r + λ0
2

+

(
A− a2

r + λ0
2

)
e
−
(
r+

λ0
2

)
(u−t)

,

τp2 (H;A, u) ≡ u+
1

r + λ0
2

log

1− H −A
a2

r+
λ0
2

−A

 .

(a) Suppose A2 ≥ ηp.
(a-i). If a2 <

(
r − λ

2 + λ0

)
η and τp1 (ηp;A2, T ) > 0, then we have

εpt =

{
1, if t ≥ τp1 (η;A2, T ) ;
0, otherwise.

(50)

Hp
t =

{
(τp1)

−1
(t;A2, T ) , if t ≥ τp1 (η;A2, T ) ;

Jp [t; η, τp1 (η;A2, T )] , otherwise.
(51)

(a-ii). Otherwise, we have εpt = 1 for all t ∈ [0, T ] and Ht = (τp1)
−1

(t;A2, T ).
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(b). Suppose A2 < ηp.

(b-i). If a2 >
(
r + λ0

2

)
η and τp2 (ηp;A, T ) > 0, then we have

εpt =

{
0, if t > τp2 (η;A, T ) ;
1, otherwise.

(52)

Hp
t =

{
Jp (t;A2, T ) , if t ≥ τp2 (η;A, T ) ;

(τp1)
−1

(t; η, τp2 (η;A, T )) , otherwise.
(53)

(b-ii). Otherwise, we have εpt = 0 for all t ∈ [0, T ] and Ht = Jp (t;A2, T ).

This proposition implies that during the trading session, part of ineffi ciency can come from

extensive margin, i.e. the timing and time length of reallocation, and the rest can com from

intensive margin, i.e. the size of reserve reallocation. The following proposition characterizes this

result for both cases in the above proposition.

Proposition 10 For case (a-i) and (b-i) in Lemma 4, there are both ineffi ciencies on extensive

and intensive margin. The active reallocation time length is shorter than equilibrium solution, and

the reallocation size is smaller in the constrained effi ciency solution.

For case (a-ii) and (b-ii) in Lemma 4, there is no effi ciency loss on extensive margin, but the

reallocation size in a meeting is smaller in the constrained effi cinecy solution.

Although the matching function implies complementarity between banks’ search, banks are

not supposed to under-search due to the positive externality. Instead, banks are actually trading

too much, in terms of extensive and intensive margins, in the equilibrium than the constrained

optimuml. Here is the reason. In the Federal funds market banks rely on bilateral trades to achieve

their target levels of reserve holding. But trades in the OTC market is opportunistic, thanks to the

search frictions, so banks tend to over-trade whenever they have a chance. Similarly, banks tend

to search longer to compensate the search frictions. In sum, banks are trading too much in the

equilibrium because of the precautionary motive, amplified by the search friction.

In the equilibrium, banks want to trade to the middle of the distribution - it is clear in the

k ∈ {0, 1, 2} model. In the constrained optimum, being the "middle bank" is not that good to the
economy. The contribution from both ends of the distribution is much higher than the middle, as

they create more trade surplus to their counterparties, which is not internalized. To the individual

bank and the planner, the motivation of trade is to narrow the dispersion of reserves, but the

dispersion is more costly to the individual bank than to the planner. Therefore, banks have more

incentive to trade to the middle than the planner. It results in over-search and over-intermediation

in the equilibrium.

Our results are novel in the literature. Farboodi et al. (2017) obtains the similar argument, but

the matching function in their model exhibits negative congestion externality, so agents oversearch
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in a steady state equilibrium. Our model has no congestion externality: matching function is

increasing returns to scale, and the trading game is supermodular.

We can also obtain similar comparative statics of the constrained effi ciency allocation as the

equilibrium solution. The following proposition summarizes the results.

Proposition 11 (1) Suppose A2 < ηp, a2 >
(
r + λ0

4

)
ηp, τp2 (ηp;A2, T ) > 0, and T is suffi ciently

small. The comparative statics of the length of search, τp2 (ηp;A2, T ), the amount of Federal funds

purchased, qpt (k, k′), net Federal funds purchase, Lp0 (k) and its derivative Lp′0 (k), and the bilateral

Federal fund rates, ρpt (k, k′), with respect to iER, iDW , κ, λ0, λ and K, are given by the following

table

τp2 |qpt | Lp0 (k) Lp′0 (k) ρpt (k, k′)

iER − − sgn(K − k) − + (−) for k + k′ > (<) K̂p
t (k−)

iDW + + sgn(k −K) + + (−) for k + k′ < (>) K̂p
t (k+)

K − − + (−) for small (large) k − + (−) for k + k′ > (<) K̂p
t (ζt)

κ − − sgn(K − k) − + (−) for k + k′ < (>) 2K
λ0 − − sgn(K − k) − + (−) for k + k′ > (<) 2K
λ + + sgn(k −K) + + (−) for k + k′ < (>) 2K

where

ζpt =

∫ T

t
er(T−s)

[
(λ− λ0) ε2

s + λ0

]
(Hp

s )
2

2A2 (κεps +Hp
s )

ds,

K̂p
t (kw) = 2K·

kw − 1 + exp
[
−λ0

2

(
T − t− (τ2 (η;A2, T )− t)+)]−Mp

(
(τp2 (ηp;A2, T )− t)+

)
exp (rT )

exp
[
−λ0

2

(
T − t− (τ2 (η;A2, T )− t)+)]−Mp

(
(τp2 (ηp;A2, T )− t)+

)
exp (rT )

,

and

Mp (u) =
∂τp2 (ηp;A2, T )

∂A2

∫ τp2(ηp;A2,T )

τp2(ηp;A2,T )−u
e−rs

{(
r +

λ

4

)[
1− (κ+ µp1) (κ+ µp2)

(κ+Hp
s )

2

]}(
−Ḣp

s

)
ds,

and (x)+ ≡ max {x, 0}.

(2) Suppose A2 ≥ ηp, a2 <
(
r − λ

4 + λ0
2

)
ηp, τp1 (ηp;A2, T ) > 0 and λ, λ0/λ and T are suffi -

ciently small. The comparative statics are given by the following table

T − τp1 |qpt | Lp0 (k) Lp′0 (k) ρpt (k, k′)

iER − − sgn(k −K) + + (−) for k + k′ > (<) K̃p
t (k−)

iDW + + sgn(K − k) − + (−) for k + k′ < (>) K̃p
t (k+)

K − − + (−) for large (small) k + + (−) for k + k′ > (<) K̃p
t (ζpt )

κ − − sgn(k −K) + + (−) for k + k′ < (>) 2K
λ0 − 0 sgn(K − k) − + (−) for k + k′ > (<) 2K
λ + − sgn(K − k) − + (−) for k + k′ > (<) 2K

where

K̃p
t (kw) = 2K ·

kw − M̃p
(
T − τp1 − (t− τp1)

+
)

exp (rT )− 1 {t < τp1} e
r(T−τp1) (λ−λ0)ηp

2
∂τp1
∂A2

1− M̃p
(
T − τp1 − (t− τp1)

+
)

exp (rT )− 1 {t < τp1} e
r(T−τp1) (λ−λ0)ηp

2
∂τp1
∂A2

,
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and

M̃p (u) =
λ

2

∂τp1 (ηp;A2, T )

∂A2

∫ T

T−u
e−rs

Hp
s (2κ+Hp

s )

(κ+Hp
s )

2

(
−Ḣp

s

)
ds.

5.5 Model Extensions

Our closed-form model has focused on homogeneous banks except initial reserve balance so far.

However, it allows for a set of extensions, in which we are still able to get closed-form solutions

and conduct comparative statics analysis. In the appendix, we introduce four pieces of extensions

separately to discuss the effects of other Federal funds market factors on the trade dynamics. Our

main extension is a heterogeneous-agent model, where we add peripheral traders, e.g. government-

sponsored enterprises and other financial institutions without Fed Reserve accounts, to the existing

group of banks. We assume the peripheral traders contact banks at a constant search intensity,

and obtain closed-form solutions. Instead of conducting comparative statics, we estimate this

extended model via simulated method of moments and evaluate the quantitative importance of the

disintermediation effect of unconventional monetary policy. Section 6 describes the model setup and

presents the quantitative analysis, while Appendix D provides the derivations for the closed-form

solutions.

We also provide other extensions in the appendix. Appendix E introduces Federal funds broker-

age to the market to study how the unconventional monetary policies affect the size of brokerage.

We assume the brokers compete for matchmaking services via free entry with non-zero entry cost.

Thus the size of brokerage is endogenously determined. In particular, IOER has disintermediation

effect on brokerage by lowering the equilibrium size of active brokers in the market. Appendix F

considers the effects of payment shocks on the market trade dynamics. We introduce both lumpy

and continuous shocks to payment flows. In particular, we find that the payment shocks do not

impact the equilibrium length of search and bilateral transaction size. Appendix G discusses the

effects of counterparty risk on the Federal funds trade. By counterparty risk, we assume both

counterparties of a meeting could default on the trade independently with some constant proba-

bilities. We find that the effects of higher counterparty risk are isomorphic to the effects of higher

transaction costs or lower search intensity.

6 Quantitative Analysis

This section provides a quantitative evaluation for the effects of unconventional monetary policy

on disintermediation. The evaluation is based on an extended model that captures the main

institutional features of the Federal funds market. The setup is as follows. There are two groups of

agents: a unit continuum of banks as in the baseline model, and a continuum of peripheral traders

that have no Federal reserve accounts. The peripheral traders represent government-sponsored
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enterprises and other financial institutions that participate in the Federal funds market but have

no access to IOER. The mass of peripheral traders is ϑ. We assume a peripheral trader only

contacts banks at a constant arrival rate ϕ. Moreover, the banks choose search intensity ε in

the contact with other banks, at an arrival rate m (ε, ε′). The bargaining power of banks in the

meeting with peripheral traders is θ ∈ (0, 1). Each peripheral trader is endowed with some reserve

balances k̃, and we denote the distribution of peripheral traders’reserve balances as F̃t
(
k̃
)
, with

F̃0

(
k̃
)
given.16 We assume the peripheral traders have no flow payoff of reserve holdings, but

only enjoy the end-of-period payoff from the overnigh reverse repurchase facility (ON RRP), i.e.

Ũ
(
k̃
)

=
(
1 + iRRP

)
k̃.

For quantitative motivation, we assume the transaction cost of a bank in a meeting is χ (ε, q) =

(κ0 + κ1ε) q
2. The peripheral traders are not subject to balance sheet regulations, thus their trans-

action cost is assumed to be 0. Since banks do not choose search intensity in contacting peripheral

traders, their transaction costs in such contacts is κ0q
2. This extended model has closed-form so-

lutions and Appendix D presents the derivations. In particular, we find the banks’value functions

are still quadratic and the peripheral traders’value functions are linear in their reserve balances.

To capture the change in the regulatory requirement on bank balance sheet and the opportunity

cost of liquidity, we allow for time-varying transaction cost and liquidity benefits. Specifically, we

assume κ0 and γ change over years in the following form:

κ0,yr = κ0,2006 × exp [gκ0 (yr − 2006)] ,

γyr = γ2006 × exp [gγ (yr − 2006)] ,

where yr denotes a year and takes values from 2006 to 2018. In our estimation, we set 2006 as the

first year and 2018 as the last year of the sample. Therefore, instead of estimating gκ0 and gγ , we

estimate κ0,2018 and γ2018.

6.1 Estimation

Instead of calibrating the deterministic theoretical model, we conduct a simulated method of mo-

ments estimation on a discretized version of the model to pin down the parameters. In the dis-

cretized version, we assume the reserve distribution is atomic (so there is a finite number of banks)

and given by the empirical distribution of reserve balances in the data. The outcome of the dis-

cretized model is random since each bank faces idiosyncratic random meetings. We estimate the

model parameters via simulated method of moments. The Appendix H describes the algorithm of

simulation and estimation.

In the current version of estimation, we first normalize r = a1 = a2 = 0, and set T = 2.5/24 to

represent the 2.5 hr trading session of the daily Federal funds market. Second, we normalize the

16As is shown in Appendix D, the distribution F̃t
(
k̃
)
is redundant in equilibrium.
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size of peripheral traders ϑ = 1 since it cannot be identified separately from the contact rate ϕ.

Third, the individual excess reserves are the quarterly bank-level data (Call reports and Form FR

Y9-C) of individual excess reserves before Federal funds trade divided by bank assets. The data

of IOER, primary credit rate and ON RRP are obtained from FRED. We conduct the simulated

method of moments based on the data over 2006Q1-2018Q4 to estimate the following parameters

{λ, λ0, k+, k−, γ2006, γ2018, θ, ϕ, κ1, κ0,2006, κ0,2018} ,

and the moments for estimation are (1) the regression coeffi cients of iER × k and K × k in the
Federal funds net purchase regressions 2. (2) the banks’aggregate share of intermediation volume

in 2006 and 2018; (3) the aggregate Fed funds sold by intermediaries normalized by aggregate bank

assets in 2006 and 2018; (4) the aggregate Fed funds purchased by intermediaries normalized by

aggregate bank assets in 2006 and 2018; (5) the aggregate fraction of trading banks in 2006 and

2018; (6) the average effective Fed funds rates in 2006 and 2018. The parameter estimation results

are listed in Table 6. The simulated moments are listed in Table 7 and 8.

We find that the estimated transaction cost κ0 increases from 2006 to 2008, while the liquidity

benefit γ decreases in the same period. This implies the rise of bank balance sheet cost due

to stronger regulations, and the declined liquidity benefit due to the increasing aggregate excess

reserves. The moments produced by our estimation are close to the targets. In particular, the

simulated regression coeffi cients have the correct signs and similar magnitudes, and the fraction of

trading banks and effective Federal funds rates are almost exactly calibrated.

6.2 Counterfactual Analysis

Given the estimation we conduct counterfactual analysis to evaluate the quantitative importance of

unconventional monetary policies and regulations to the disintermediation channel. In particular,

we consider the following exercises and examine how the level of intermediation in 2018 changes:

(1) Change the paths of IOER, primary credit rate and ON RRP in 2018 to the paths in 2006.

This exercise investigates how the level of intermediation changes in 2018 if the Federal Reserve

recovers the policy rates in 2006. (2) Proportionally change individual banks’reserve balances in

2018, such that the average individual reserve balances are equal to the levels in 2006. This exercise

examines the effect of aggregate excess reserves on disintermediation. (3) Change κ0,2018 to κ0,2006.

This exercise evaluates the impact of rising transaction cost on disintermediation.

Table 9 reports the results of counterfactuals. We find that eliminating IOER doubles the

intermediation volume share in 2018, while reducing the transaction cost can increase the level

of intermediation by about 4 times. However, the effect of aggregate excess reserves on disin-

termediation is small, since the intermediation share almost doesn’t change in the counterfactual

analysis.
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7 Conclusion

This paper proposes a new channel of monetary policy and regulation on the monetary policy

implementation, the disintermediation channel. When the interest rate on excess reserves (IOER)

increases or the balance sheet cost rises, the intermediation trades by banks decline in the Federal

funds market. We rationalize this channel in a continuous-time search-and-bargaining model of

divisible funds and endogenous search intensity, which nests the matching model of Afonso & Lagos

(2015b) and the transaction model of Hamilton (1996). IOER decreases the spread of marginal

value of reserves, and balance sheet cost increases the marginal cost of holding reserves, both of

which lower the gains of intermediation. We find that the equilibrium is constrained ineffi cient as

banks trade too frequently. The disintermediation channel is both empirically and quantitatively

important. Empirically, it significantly impede the reallocation of reserves from lender banks to

borrower banks. Quantitatively, eliminating IOER and reducing the balance sheet cost can greatly

raise the level of intermediation during the period after the Great Recession. For further research,

we will focus on the investigating how the disintermediation channel impacts the effects of current

monetary policy framework on the Federal funds rate and real economy, as well as calculating the

optimal monetary policy and regulation via quantitative analysis.
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Appendices

A Details of Data and Measurement

In this section, we describe how we collect the data and construct various measurement we used

for the summary statistics and estimation.

A.1 Sources

Financial data of the Federal funds market participants come from the following:

• Call Reports. This is the source of the subsidiary-level data. In particular, we use form
FFIEC 031 for banks with both domestic and foreign offi ces, form FFIEC 041 for banks

with domestic offi ces only, and form FFIEC 002 for U.S. branches and agencies of foreign

banks (FBO). These forms are available for download at the Federal Financial Institutions

Examination Council (FFIEC).17

• FR Y-9C. This is the source of the consolidated data at the level of holding companies (for

bank holding companies, savings and loan holding companies, and intermediate holding com-

panies) with total consolidated assets of $1 billion or more (prior to 2015, this threshold was

just $500 million). This is available for download at the Federal Reserve Bank of Chicago.18

• Attributes, relationships, and transformations tables. This is the source of the owner-
ship structure of holding companies upon their subsidiaries. They are available for download

at National Information Center (NIC).19

• 10Q and 10K. This is the source of government sponsored enterprises (GSE) data. These

forms are available for download at the Security Examination Commission (SEC).20 The GSE

data is fully available since 2006Q1.

• H.4.1. This is the source of the balance sheet of the Federal Reserve System and factors

affecting reserve balances of depository institutions. This is available for download at the

Board of Governors of the Federal Reserve System.21

• Time series of the economy. It is available for download at the Federal Reserve Bank of
St Louis (FRED).22

17https://cdr.ffi ec.gov/public/
18https://www.chicagofed.org/banking/financial-institution-reports/bhc-data
19https://www.ffi ec.gov/npw/FinancialReport/DataDownload
20https://www.sec.gov/edgar/searchedgar/companysearch.html
21https://www.federalreserve.gov/releases/h41/
22https://fred.stlouisfed.org/
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A.2 Consolidated sample

Whenever possible, we always measure variables at the holding-company level. We think that

holding companies are desirable sample unit because first, usually the subsidiaries’reserves, which

are not directly observable in the Call reports, are corresponded by their holding company’s master

accounts in the Federal Reserve Banks, which are observable. Second, sometimes the decision

of Federal Funds trading is delegated to the holding company. Third, it avoids double-counting

the intra-holding-company Federal Funds trades, which are different from those normal interbank

transactions.

Consolidation is done by referring to items filed in FR Y-9C. For the holding companies not

eligible to file FR Y-9C, or items not available from FR Y-9C, we directly consolidate the Call report

items from the subsidiary level up to the topmost holding-company level, based on the relationships

table from NIC. In this appendix, we always refer i as the index for holding companies and j as the

index for i’s subsidiaries. We focus on banks that have positive amounts of asset and total reserve

balances, and trade at least once in the Federal funds market in the data sample.

A.3 Excess Reserves

The formula to measure excess reserves bank i holds at the Federal Reserve account at the end of

quarter t is given by

Excess Reserves it = Total Reserves it -
{∑

j
Required Reservesjt - Vault Cashit

}
+
.

Total Reserves it is measured by item RCFD0090 in FR Y-9C (“Balances due from Federal

Reserve Banks”). Vault Cashit is approximated by item RCON0080 in FR Y-9C (“Currency and

coin”). The formula to calculate Required Reservesjt is based on subsidiary j’s net transaction

accounts. For example, the formula of reserve requirement in 2010 is given by the following table:

Table 1: Reserve requirement in 2010

Net transaction accounts % required
$0 to $10.7 million 0
More than $0.7 million to $55.2 million 3
More than $55.2 million 10

The table is updated every year.23 To estimate net transaction acccounts, we substract item

RCON 2215 of j’s Call Report (“Total Transaction Accounts”) from the sum of item RCFD 0083

(“Balances due from depository institutions in the U.S.: U.S. branches and agencies of foreign

23The historical reserve requirement can be found on https://www.federalreserve.gov/monetarypolicy/reservereq.htm
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banks (including their IBFs)”), item RCFD 0085 (“Balances due from depository institutions in

the U.S.: Other depository institutions in the U.S. (including their IBFs)”) and item RCON 0020

(“Cash items in process of collection and unposted debit”). Then we apply the historical reserve

requirement formulas on net trans accounts to calculate Required Reservesjt.

To measure the excess reserves bank i holds before entering the Federal funds market, we

subtract the net Federal funds purchase from Excess Reserves it. Thus the pre-trade excess reserves

is given by

Excess Reserves pre-tradeit = Excess Reserves it - Federal funds purchased it

+ Federal funds sold it.

By dividing the pre-trade excess reserves by bank assets, we obtain the measure exres_assets in

the regressions.

A.4 Federal Funds Trades and Intermediation

We compute the net Federal funds borrowed by substracting item BHDM B993 in FR Y-9C (“Fed-

eral funds purchased in domestic offi ces”) from item BHDM B987 (“Federal funds sold in domestic

offi ces”). We measure bank’s intermediation by Reallocated Funds it:

Reallocated Funds it = Federal funds purchased it + Federal funds sold it

- |Federal funds purchased it - Federal funds sold it| .

By dividing the net Federal funds borrowed and Reallocated Funds by bank assets respectively, we

obtain the measure ffnet_assets and ffreallo_assets in the regressions.

A.5 Bank-level Controls

We use the following items from Call report to measure various attributes of banks.

• Size and scope

— logarithm of assets (item RCFD 2170 “Total assets”).

— bank equity (item RCFD 3210 “Total bank equity capital”) over bank assets.

• Marginal benefit of liquidity

—ROA

—High-quality liquid assets (HQLA) over total assets (Ihrig et al., 2019)

• Risk
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— ratio of non-performing loan (sum of items 1 through 8.b of Column B and C in Schedule

RC-N) over bank assets, as in Afonso et al. (2011)

— ratio of loan (item RCFD 2122 “Total loans and leases held for investment and held for

sale”) over bank assets

• Regulation

—Tier-1 leverage ratio (item RCFA 7204 “Tier 1 leverage ratio”)

• Other indicators

— bank entity type (in the NIC attributes table)

—Fed District dummy (in the NIC attributes table)

A.6 Economy-wide Controls

• quarterly real GDP growth rate (available from FRED)

• quarterly unemployment rate (available from FRED)

• standard deviation of the Fed’s general treasury account in a quarter (available from H.4.1)
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B Tables

B.1 Summary statistics

Table 2: Summary statistics

Variable Obs Mean Std. Dev. Min Max
Net Fed funds purchase/Assets 107,959 -0.0074 0.0554 -0.9690 0.9608
Ex. res. pre-trade/Assets 107,959 0.0434 0.1015 -0.9062 4.1827
log (Assets) 107,959 13.7981 1.4571 4.6728 21.6874
Dummy: reallocation 52,778 0.2174 0.4125 0 1
Fed funds reallocation/Assets 52,778 0.0021 0.0072 0 0.0388
IOER (%) 64 0.3602 0.5470 0 2.4
Primary credit rate (%) 64 2.0781 0.1804 0.5 6.25
Agg. ex. res./Agg. assets 64 0.0428 0.0410 -0.0084 0.1070

Notes: This table presents the summary statistics of key variables. The observations for the first 5 variables are bank-

quarter. “Net Fed funds purchase/Assets” is a bank’s net Federal funds purchase divided by bank assets. “Ex. res.

pre-trade/Assets”is a bank’s excess reserve balances before Federal funds trade divided by bank assets. “log(Assets)”

is the log value of bank assets. “Dummy: reallocation” is equal to 1 if a bank intermediates Federal funds on a day,

and equal to 0 otherwise. “Fed funds reallocation/Assets”is a bank’s volume of Federal funds reallocation divided by

bank assets. “Agg. ex. res/Agg. assets” is the aggregate excess reserve balances before Federal funds trade divided

by the aggregate bank assets. The sample consists of U.S. banks that hold positive total reserves at the Fed account

and trade Federal funds at least once in the data sample. The sample period is from 2003Q1 to 2018Q4.
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B.2 Regression results

Table 3: Probit on Reallocation

Dep. Var. Dummy: Reallocation
Probit (Pooled) Panel Probit (RE) IV Probit
(1) (2) (3) (4) (5) (6)

IOER -0.182*** -0.179*** -0.320*** -0.318*** -0.639*** -0.721***
(0.033) (0.037) (0.051) (0.055) (0.085) (0.100)

IOER×Ind. ex res 1.250 0.397 5.352***
(0.986) (1.162) (1.450)

Agg ex res -3.400*** -4.312*** -5.871*** -5.843*** -3.183*** -3.686***
(0.616) (0.759) (0.935) (1.006) (0.752) (0.969)

Agg ex res×Ind. ex res 46.293** -2.055 23.063
(17.992) (21.176) (24.490)

Prim. credit rate -0.003 -0.002 -0.025 -0.021 -0.050*** -0.051***
(0.011) (0.012) (0.016) (0.017) (0.019) (0.019)

Prim. credit rate×Ind. ex res -0.480* -0.625 -0.634
(0.260) (0.388) (0.485)

Ind. ex res -4.596*** -6.275*** -10.270*** -9.046*** -3.426*** -5.256***
(0.911) (0.981) (1.223) (1.624) (0.210) (1.891)

All Fixed Effects Y Y Y Y Y Y
Bank controls Y Y Y Y Y Y
Agg. controls Y Y Y Y Y Y
Specification tests
Wald test of exogeneity
χ2 stat 60.72 53.09
p-value [0.000] [0.000]
Weak instrument test
χ2 stat 962.82 1093.15
p-value [0.000] [0.000]
Hansen J test
χ2 stat 2.188
p-value [0.335]
Pseudo R2 0.174 0.174
Number of observations 44,048 44,048 44,048 44,048 39,674 39,674
Number of banks 1,122 1,122 1,122 1,122 1,121 1,121

Notes: This table presents the estimation results on the Probit regression of Federal funds intermediation (1). The

sample consists of U.S. banks that hold positive total reserves at the Fed account and intermediate Federal funds at

least once in the data sample. The sample period is from 2003Q1 to 2018Q4. Standard errors clustered by banks are

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Tobit on Reallocation

Dep. Var. FF Reallocation/Assets
Tobit (Pooled) Panel Tobit (RE) IV Tobit
(1) (2) (3) (4) (5) (6)

IOER -0.002*** -0.002*** -0.002*** -0.002*** -0.009*** -0.010***
(0.000) (0.001) (0.000) (0.000) (0.001) (0.001)

IOER×Ind. ex res 0.008 -0.001 0.087***
(0.021) (0.004) (0.020)

Agg ex res -0.058*** -0.074*** -0.059*** -0.055*** -0.057*** -0.066***
(0.009) (0.012) (0.007) (0.007) (0.011) (0.013)

Agg ex res×Ind. ex res 0.846*** -0.185*** 0.424
(0.257) (0.061) (0.298)

Prim. credit rate -0.000 -0.000 -0.000*** -0.000*** -0.001*** -0.001***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Prim. credit rate×Ind. ex res -0.000 0.001 -0.001
(0.003) (0.001) (0.005)

Ind. ex res -0.070*** -0.097*** -0.042*** -0.040*** -0.058*** -0.086***
(0.012) (0.012) (0.002) (0.004) (0.003) (0.021)

All Fixed Effects Y Y Y Y Y Y
Bank controls Y Y Y Y Y Y
Agg. controls Y Y Y Y Y Y
Specification tests
Wald test of exogeneity
χ2 stat 14.52 37.88
p-value [0.006] [0.000]
Weak instrument test
χ2 stat 1098.27 1468.42
p-value [0.000] [0.000]
Hansen J test
χ2 stat 5.439
p-value [0.066]
Pseudo R2 -0.298 -0.312
Number of observations 44,097 44,097 44,097 44,097 39,691 39,691
Number of banks 1,127 1,127 1,127 1,127 1,122 1,122

Notes: This table presents the estimation results on the Tobit regression of Federal funds intermediation (1). The

sample consists of U.S. banks that hold positive total reserves at the Fed account and intermediate Federal funds at

least once in the data sample. The sample period is from 2003Q1 to 2018Q4. Standard errors clustered by banks are

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Effects of IOER and aggregate excess reserves on net Federal funds purchased

Dep. Var. ffnet_assets
OLS 2SLS

(1) (2) (3) (4) (5) (6)
IOER 0.001 0.002*** -0.073*** -0.006

(0.001) (0.001) (0.011) (0.024)
IOER×Ind. ex res 0.102*** 0.102*** 0.300*** 0.301***

(0.011) (0.011) (0.062) (0.069)
Agg ex res -0.025*** -0.077*** -0.426*** -0.226*

(0.010) (0.013) (0.056) (0.116)
Agg ex res×Ind. ex res 2.893*** 2.910*** 4.221*** 4.252***

(0.288) (0.291) (0.834) (0.830)
Prim. credit rate -0.001*** 0.000 -0.018*** -0.001

(0.000) (0.000) (0.002) (0.005)
Prim. credit rate×Ind. ex res -0.071*** -0.071*** -0.059*** -0.059***

(0.009) (0.009) (0.018) (0.018)
Ind. ex res -0.361*** -0.434*** -0.435*** -0.310*** -0.591*** -0.595***

(0.021) (0.037) (0.037) (0.0037) (0.077) (0.076)
Bank FE Y Y Y Y Y Y
Quarter FE N N Y N N Y
Year FE Y Y N Y Y N
Bank×Crisis FE Y Y Y Y Y Y
Bank×Post-Crisis FE Y Y Y Y Y Y
Bank controls Y Y Y Y Y Y
Agg. controls Y Y Y Y Y Y
Specification tests
Underidentification test
χ2 stat 291.4 251.8 73.8
p-value [0.000] [0.000] [0.000]
Weak Instrument test
F stat 70.31 31.68 10.08
Relative OLS bias>10% (p-value) [0.000] [0.000] [0.000]
Relative OLS bias>30% (p-value) [0.000] [0.000] [0.000]
Hansen J test
χ2 stat 0.0787 0.0497
p-value [0.779] [0.824]
Adj. R2 0.810 0.865 0.866 0.305 0.504 0.498
Number of observations 104,291 104,291 104,291 85,141 85,141 85,141
Number of banks 3,506 3,506 3,506 2,909 2,909 2,909

Notes: This table presents the estimation results on the net Federal funds purchased regression (2). The sample

consists of U.S. banks that hold positive total reserves at the Fed account and trade Federal funds at least once in

the data sample. The sample period is from 2003Q1 to 2018Q4. Standard errors clustered by banks are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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B.3 Tables in Quantitative Analysis

Table 6: Parameter estimation

Parameter λ λ0/λ0 k+ k− θ ρ

Estimated Value 20.1987 0.5605 2.9480 −0.0596 0.7005 0.2000
Standard deviation 0.0007 3.6× 10−5 0.0038 0.0048 0.0043 1.3× 10−5

Parameter κ1 κ0,2006 κ0,2018 γ2006 γ2018

Estimated Value 0.00568 0.00001 0.000705 0.00035 0.00028
Standard deviation 0.0054 0.0038 0.0024 0.0062 0.0019

Notes: This table lists the estimated values and standard deviations of the model parameters from simulated method

of moments.

Table 7: Simulated regression coeffi cients

Moments Target Simulation 95% CI
Coef of ind. ex. res. -0.595 -0.199 [-0.252,-0.151]
Coef of ind. ex. res×ioer† 0.301 0.0540 [0.044,0.067]
Coef of ind. ex. res×dw -0.059 -0.0084 [-0.015,-0.003]
Coef of ind. ex. res×agg. ex. res.† 4.252 2.2829 [1.548,3.069]

Notes: This table presents the simulated coeffi cients of Federal funds net purchase regressions under the estimated

parameters. The column “Target” lists the estimated coeffi cients from the original regressions. The column “Sim-

ulation” lists the simulated coeffi cients. The column “95% CI” lists the 95% confidence interval of the simulated

coeffi cients. The sign † represents the target is used in estimation. “ind. ex. res.” is the individual excess reserves
divided by individual bank assets. “ioer” is the interest rate on excess reserves. “dw” is the primary credit rate.

“agg. ex. res.” is the aggregate excess reserves divided by aggregate bank assets.

Table 8: Simulated moments

Year 2006 2018
Target Simulation Target Simulation

Intermediation volume share 0.2150 0.1715 0.0663 0.0726
FF sold by intermediary 0.0045 0.0034 0.0002 0.0009
FF purchased by intermediary 0.0107 0.0062 0.0013 0.0031
Fraction of trading banks 0.8894 0.8805 0.6896 0.6985
Effective Federal funds rate 0.0514 0.0511 0.0204 0.0207

Notes: This table presents the simulated moments under the estimated parameters. The column “Target” lists the

moments from the data. The column “Simulation”lists the simulated moments. All the targets are used in estimation.

“Intermediation volume share” is the share of Federal funds reallocation in total Federal funds volume. “FF sold by

intermediary” is the volume of Federal funds sold by intermediary banks as a share of aggregate bank assets. “FF

purchased by intermediary”is the volume of Federal funds purchased by intermediary banks as a share of aggregate

bank assets. “Fraction of trading banks” is the fraction of banks that trade in the total number of banks. All the

moments are average values across quarters within each year.
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Table 9: Counterfactual analysis

Counterfactual analysis
(1) (2) (3)

Moments in 2018 Target Simulation IOER Agg ex res Transct cost
Intermediation Volume Share 0.0663 0.0726 0.1328 0.0654 0.3025
FF sold by intermediary 0.0002 0.0009 0.0019 0.0006 0.0166
FF purchased by intermediary 0.0013 0.0031 0.0041 0.0029 0.0382
Fraction of trading banks 0.6896 0.6985 0.8802 0.6985 0.6985
Effective Federal funds rate 0.0204 0.0207 0.0318 0.0203 0.0331

Notes: This table presents the simulated counterfactual analysis under the estimated parameters. The column “Tar-

get”lists the moments from the data. The column “Simulation”lists the simulated moments of the estimated model.

The columns under “Counterfactual analysis” lists the simulated moments. under the corresponding counterfactual

exercise. “IOER” represents the exercise that changes the values of IOER, primary credit rate and ON RRP from

2018 to 2006. “Agg ex res” represents the exercise that changes the aggregate excess reserves from 2018 to 2006 by

proportionaly scaling individual excess reserves. “Transct cost”represents the exercise that changes the transaction

parameter κ0 from the 2018 value to 2006 value. “Intermediation volume share”is the share of Federal funds reallo-

cation in total Federal funds volume. “FF sold by intermediary”is the volume of Federal funds sold by intermediary

banks as a share of aggregate bank assets. “FF purchased by intermediary”is the volume of Federal funds purchased

by intermediary banks as a share of aggregate bank assets. “Fraction of trading banks”is the fraction of banks that

trade in the total number of banks. All the moments are average values across quarters within each year.

C Proofs and Derivations

C.1 Derivation of the general form of m (ε, ε′)

For any ε, ε′ ∈ [0, 1], equation (4) implies that

m
(
ε, ε′

)
= ε′m (ε, 1) +

(
1− ε′

)
m (ε, 0)

= [m (ε, 1)−m (ε, 0)] ε′ +m (ε, 0) .

By symmetry we have

m (ε, 1) = m (1, ε) = [m (1, 1)−m (1, 0)] ε+m (1, 0) ,

m (ε, 0) = m (0, ε) = [m (0, 1)−m (0, 0)] ε+m (0, 0) .

Thus we can get

m
(
ε, ε′

)
= [m (ε, 1)−m (ε, 0)] ε′ +m (ε, 0)

= {[m (1, 1)−m (1, 0)] ε+m (1, 0)− [m (0, 1)−m (0, 0)] ε−m (0, 0)} ε′

+ [m (0, 1)−m (0, 0)] ε+m (0, 0)

= [m (1, 1)−m (1, 0)−m (0, 1) +m (0, 0)] εε′ + [m (0, 1)−m (0, 0)] ε

+ [m (1, 0)−m (0, 0)] ε′ +m (0, 0)

= (λ− 2λ1 + λ0) εε′ + (λ1 − λ0)
(
ε+ ε′

)
+ λ0.
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C.2 Proof of Lemma 1

Proof. (i). [St decreases in ε and ε′]: Pick any ε, ε̃ s.t. ε̃ > ε,

St
(
k, k′, ε, ε′

)
= Vt

[
k + qt

(
k, k′, ε, ε′

)]
− Vt (k)− χ

[
ε, qt

(
k, k′, ε, ε′

)]
+Vt

[
k′ − qt

(
k, k′, ε, ε′

)]
− Vt

(
k′
)
− χ

[
ε′,−qt

(
k, k′, ε, ε′

)]
≥ Vt

[
k + qt

(
k, k′, ε̃, ε′

)]
− Vt (k)− χ

[
ε, qt

(
k, k′, ε̃, ε′

)]
+Vt

[
k′ − qt

(
k, k′, ε̃, ε′

)]
− Vt

(
k′
)
− χ

[
ε′,−qt

(
k, k′, ε̃, ε′

)]
≥ Vt

[
k + qt

(
k, k′, ε̃, ε′

)]
− Vt (k)− χ

[
ε̃, qt

(
k, k′, ε̃, ε′

)]
+Vt

[
k′ − qt

(
k, k′, ε̃, ε′

)]
− Vt

(
k′
)
− χ

[
ε′,−qt

(
k, k′, ε̃, ε′

)]
= St

(
k, k′, ε̃, ε′

)
.

Since St is symmetric in ε and ε′, then St also decreases in ε′.

[|qt| decreases in ε and ε′]: Since χ (ε, q) is complementary in ε and q, then for any ε′, ε, q′, q

such that ε′ > ε and q′ > q ≥ 0, we have

χ
(
ε′, q′

)
− χ

(
ε′, q

)
≥ χ

(
ε, q′

)
− χ (ε, q) .

This means the function h (ε; q′, q) := χ (ε, q′) − χ (ε, q) is a single crossing function for any ε and

q′ > q ≥ 0. By Milgrom and Shannon (1994),

qt
(
k, k′, ε, ε′

)
= arg max

q

{
Vt (k + q) + Vt

(
k′ − q

)
− χ (ε, q)− χ

(
ε′, q

)}
(C.1)

is decreasing in ε if qt (k, k′, ε, ε′) > 0, and increasing in ε if qt (k, k′, ε, ε′) < 0. Similarly, we can

prove |qt (k, k′, ε, ε′)| is decreasing in ε′.
[St supermodular]: Suppose Vt (k) is weakly concave and twice differentiable, then the optimal

trade size qt (k, k′, ε, ε′) is interior and differentiable by the implicit function theorem. Without loss

of generality we assume qt (k, k′, ε, ε′) > 0. Then by the envelope theorem we have

∂St (k, k′, ε, ε′)

∂ε
= −χε

(
ε, qt

(
k, k′, ε, ε′

))
,

and
∂2St (k, k′, ε, ε′)

∂ε∂ε′
= −χεq

(
ε, qt

(
k, k′, ε, ε′

)) ∂qt (k, k′, ε, ε′)

∂ε′
> 0,

where we apply χεq > 0 and ∂qt(k,k′,ε,ε′)
∂ε′ < 0.

(ii). [St (k, k, ε, ε′) = 0] If Vt (k) is concave, then

St
(
k, k, ε, ε′

)
≡ max

q

{
Vt (k + q) + Vt (k − q)− Vt (k)− Vt (k)− χ (ε, q)− χ

(
ε′,−q

)}
≤ max

q

{
2Vt (k)− Vt (k)− Vt (k)− χ (ε, q)− χ

(
ε′,−q

)}
= max

q

{
−χ (ε, q)− χ

(
ε′, q

)}
= 0.
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[Monotonicity of St (k, k′, ε, ε′) and qt (k, k′, ε, ε′) in k] Note that for a concave functio f (x),

where x is a scalar, we must have that for any x′ > x and ∆ > 0,

f (x) + f
(
x′
)

= f

(
x′ − x+ ∆

x′ − x+ 2∆
(x−∆) +

∆

x′ − x+ 2∆

(
x′ + ∆

))
+f

(
∆

x′ − x+ 2∆
(x−∆) +

x′ − x+ ∆

x′ − x+ 2∆

(
x′ −∆

))
≥ x′ − x+ ∆

x′ − x+ 2∆
f (x−∆) +

∆

x′ − x+ 2∆
f
(
x′ + ∆

)
+

∆

x′ − x+ 2∆
f (x−∆) +

x′ − x+ ∆

x′ − x+ 2∆
f
(
x′ + ∆

)
= f (x−∆) + f

(
x′ + ∆

)
. (C.2)

Thus for any k′ > k and q < 0:

Vt (k + q) + Vt
(
k′ − q

)
− χ (ε, q)− χ

(
ε′,−q

)
< Vt (k) + Vt

(
k′
)
− χ (ε, 0)− χ

(
ε′, 0

)
,

which implies that qt (k, k′, ε, ε′) ≥ 0 for any k′ > k, with strict inequality if Vt is strictly concave.

Moreover, for any k̃ > k and q̃ > q, the inequality (C.2) implies that

Vt (k + q̃) + Vt

(
k̃ + q

)
≥ Vt (k + q̃ − (q̃ − q)) + Vt

(
k̃ + q + (q̃ − q)

)
= Vt (k + q) + Vt

(
k̃ + q̃

)
.

Therefore, the function Vt (k + q) has increasing differences over (−k, q). This implies that for any
k′ > k̃ > k, and any ε and ε′,

St
(
k, k′, ε, ε′

)
= Vt

(
k + qt

(
k, k′, ε, ε′

))
+ Vt

(
k′ − qt

(
k, k′, ε, ε′

))
− Vt (k)− Vt

(
k′
)

−χ
(
ε, qt

(
k, k′, ε, ε′

))
− χ

(
ε′,−qt

(
k, k′, ε, ε′

))
≥ Vt

(
k + qt

(
k̃, k′, ε, ε′

))
− Vt (k) + Vt

(
k′ − qt

(
k̃, k′, ε, ε′

))
− Vt

(
k′
)

−χ
(
ε, qt

(
k̃, k′, ε, ε′

))
− χ

(
ε′,−qt

(
k̃, k′, ε, ε′

))
≥ Vt

(
k̃ + qt

(
k̃, k′, ε, ε′

))
− Vt

(
k̃
)

+ Vt

(
k′ − qt

(
k̃, k′, ε, ε′

))
− Vt

(
k′
)

−χ
(
ε, qt

(
k̃, k′, ε, ε′

))
− χ

(
ε′,−qt

(
k̃, k′, ε, ε′

))
= St

(
k̃, k′, ε, ε′

)
,

where the inequality in the fourth line is due to the increasing differences property of Vt (k + q)

over (−k, q). The inequality is strict if Vt is strictly concave. Similarly, we can prove St (k, k′, ε, ε′)
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is (strictly) increasing in k for all k > k′. Moreover, by Milgrom & Shannon (1994), the increasing

differences property also implies that for any k′ > k, qt (k, k′, ε, ε′) is decreasing in k and increasing

in k′. Q.E.D.

C.3 Derivation of HJB (8) and KFE (9)

By the property of Poisson process, the equation (7) for value function Vt (k) can be rewritten as

Vt (k)

= max
{εz}z∈[t,T ]∈[0,1][t,T ]


∫ T
t e−

∫ z
t [r+m(εs,ε̄s)]ds


u (k) +

∫
k′


Vz [k + qz (k, k′, εz, εz (k′))]
−χ [εz, qz (k, k′, εz, εz (k′))]
−e−r(T+∆−z)Rz (k, k′, εz, εz (k′))


×m (εz, εz (k′)) dFz (k′)

 dz

+e−
∫ T
t [r+m(εs,ε̄s)]dsU (k)


Denote ε∗t (k) as one equilibrium search profile. By taking the first-order derivative of Vt (k) w.r.t.

t and plugging in the solution to e−r(T+∆−z)Rz (k, k′, εz, εz (k′)), we can obtain

rVt (k) = V̇t (k) + u (k) +

∫
1

2
St
[
k, k′, ε∗t (k) , ε∗t

(
k′
)]
m
[
ε∗t (k) , ε∗t

(
k′
)]
dFt

(
k′
)
.

To derive the optimality condition for ε∗t (k), letB denote the space of bounded real-valued functions

defined on K× [0, T ]. Define a mappingM on B as follows:

(Mw) (k, t)

= max
{εz}z∈[t,T ]∈[0,1][t,T ]


∫ T
t e−

∫ z
t [r+m(εs,ε̄s)]ds


u (k) +

∫
k′


w [k + bz (k, k′, εz, εz (k′)) , z]
−χ [εz, bz (k, k′, εz, εz (k′))]
−e−r(T+∆−z)Yz (k, k′, εz, εz (k′))


×m (εz, εz (k′)) dFz (k′)

 dz

+e−
∫ T
t [r+m(εs,ε̄s)]dsU (k)


where

bt
(
k, k′, ε, ε′

)
∈ arg max

b

{
w (k + b, t)− w (k, t)− χ (ε, b)

+w (k′ − b, t)− w (k′, t)− χ (ε′,−b)

}
and

e−r(T+∆−t)Yt
(
k, k′, ε, ε′

)
=

1

2

{
w (k + bt (k, k′, ε, ε′) , t)− w (k, t)− χ (ε, bt (k, k′, ε, ε′))

+w (k′, t)− w (k′ − bt (k, k′, ε, ε′) , t) + χ (ε′,−bt (k, k′, ε, ε′))

}
.

It is clear that the solution Vt (k) to the HJB (8) is a fixed point of the mapping M. Therefore,

ε∗t (k) must be the solution to the right-hand side of (Mw) (k, t) if we replace w with V . Note

that since the time variable t is continuous, we have a continuum of control variables. We follow

the heuristic approach in van Imhoff (1982) to derive the condition for ε∗t (k). This approach

relies on interpreting the integral in (Mw) (k, t) as a summation of discrete variables over intervals

with widths dz and dt. Then the Lebesgue dominated convergence theorem guarantees that the
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summation converges to the original integral as the widths of intervals approach 0. Then the terms

in (Mw) (k, t) which are related to εt (k) can be written as

e−
∫ t+dt
t [r+m(εt(k),ε̄t)]ds


u (k) +

∫
k′


w [k + bt (k, k′, εt (k) , εt (k′)) , t]
−χ [εt (k) , bt (k, k′, εt (k) , εt (k′))]
−e−r(T+∆−t)Yt (k, k′, εt (k) , εt (k′))


×m (εt (k) , εt (k′)) dFt (k′)

 dt

+e−
∫ t+dt
t [r+m(εt(k),ε̄t)]dsw (k, t− dt)

= (1− rdt)w (k, t− dt) + o (|dt|) +


u (k) +

∫
k′


w [k + bt (k, k′, εt (k) , εt (k′)) , t]
−w (k, t− dt)
−χ [εt, bt (k, k′, εt (k) , εt (k′))]
−e−r(T+∆−t)Yt (k, k′, εt (k) , εt (k′))


×m (εt (k) , εt (k′)) dFt (k′)

 dt.

Thus the maximizer of εt (k) to the above equation when dt→ 0 is given by

εt (k) ∈ arg max
ε∈[0,1]


∫
k′

1
2

[
w [k + bt (k, k′, ε, εt (k′)) , t]− w (k, t)− χ [εt, bt (k, k′, ε, εt (k′))]
+w [k′ − bt (k, k′, ε, εt (k′)) , t]− w (k′, t)− χ [εt (k′) ,−bt (k, k′, ε, εt (k′))]

]
×m (εt (k) , εt (k′)) dFt (k′)


where we plug in the solution to e−r(T+∆−t)Yt (k, k′, ε, εt (k′)). This gives the HJB (8).

Next we take a heuristic approach to derive the KFE. Let ∆ be a small time interval that is

close to 0. Then by definition of Ft (k), we have

Ft+∆ (kw) = [1−∆ ·m (εt (k) , ε̄t)]Ft (kw)

+

∫
k≤kw

∫
k′

∆ ·m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
≤ kw

}
dFt

(
k′
)
dFt (k)

+

∫
k>kw

∫
k′

∆ ·m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
≤ kw

}
dFt

(
k′
)
dFt (k) .

On the right-hand side, the first term represents the mass of banks that do not meet counterparties

during [t, t+ ∆]. The second term represents the banks that have meetings during [t, t+ ∆] and

hold reserves no more than kw both before and after the meeting. The third term represents the

banks that have meetings during [t, t+ ∆] and hold reserves more than kw before meeting and no

more than kw after the meeting. These three groups of banks constitute the mass of banks with

reserves no more than kw at t+ ∆. By rearranging terms, we can get

Ft+∆ (kw)− Ft (kw)

∆
= −m (εt (k) , ε̄t)Ft (kw)

+

∫
k≤kw

∫
k′
m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
≤ kw

}
dFt

(
k′
)
dFt (k)

+

∫
k>kw

∫
k′
m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
≤ kw

}
dFt

(
k′
)
dFt (k)

= −
∫
k≤kw

∫
k′
m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
> kw

}
dFt

(
k′
)
dFt (k)

+

∫
k>kw

∫
k′
m
(
εt (k) , εt

(
k′
))

1
{
k + qt

(
k, k′

)
≤ kw

}
dFt

(
k′
)
dFt (k) ,
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where in the second equality we expand m (εt (k) , ε̄t)Ft (kw) to∫
k≤kw

∫
k′
m
(
εt (k) , εt

(
k′
))
dFt

(
k′
)
dFt (k) ,

and combine it with
∫
k≤kw

∫
k′m (εt (k) , εt (k′)) 1 {k + qt (k, k′) ≤ kw} dFt (k′) dFt (k). Then we can

take ∆→ 0 and obtain the KFE (9).

C.4 Proof of Proposition 1

Proof. To prove {Ω (St, Ft) ,�s} is a complete lattice, it is suffi cient to show St (k, k′, ε, ε′)m (ε, ε′)

is supermodular in ε and ε′. Appendix C.1 implies that θm (ε) = (λ−2λ1+λ0)ε
(λ−2λ1+λ0)ε+λ1−λ0

only depends

on ε, and

m1

(
ε, ε′

)
= m2

(
ε′, ε

)
=
m12 (ε′, ε) ε′

θm (ε′)
=
m12 (ε, ε′) ε′

θm (ε′)
.

Of course, the product of supermodular functions is not necessary supermodular. Notice that

∂2 [St (k, k′, ε, ε′)m (ε, ε′)]

∂ε∂ε′

= m
(
ε, ε′

) ∂2St
∂ε∂ε′

+
∂St
∂ε

m2

(
ε, ε′

)
+
∂St
∂ε′

m1

(
ε, ε′

)
+ Stm12

(
ε, ε′

)
= m

(
ε, ε′

) ∂2St
∂ε∂ε′

− κ′ (ε) χ̃ (q)m2

(
ε, ε′

)
− κ′

(
ε′
)
χ̃ (q)m1

(
ε, ε′

)
+ Stm12

(
ε, ε′

)
= m

(
ε, ε′

) ∂2St
∂ε∂ε′

− θκ (ε)κ (ε)

ε
χ̃ (q)

m12 (ε, ε′) ε

θm (ε)
− θκ (ε′)κ (ε′)

ε′
χ̃ (q)

m12 (ε, ε′) ε′

θm (ε′)

+Stm12

(
ε, ε′

)
≥ m

(
ε, ε′

) ∂2St
∂ε∂ε′

+
[
St − κ (ε)χ (q)− κ

(
ε′
)
χ̃ (q)

]
m12

(
ε, ε′

)
≥ 0

where the last second inequality applies θκ (ε) ≤ θm (ε), and the last inequality applies ∂2St
∂ε∂ε′ ≥ 0

and St − κ (ε)χ (q)− κ (ε′) χ̃ (q) ≥ 0. Q.E.D.

C.5 Derivation of Equation (14)

Following Üslü (2019), the planner’s current-value Hamiltonian can be written as

Hpt ≡
∫
u (k) dF pt (k)−

∫ ∫
χ
[
εpt (k) , qpt

(
k, k′

)]
m
[
εpt (k) , εpt

(
k′
)]
dF pt

(
k′
)
dF pt (k) (C.3)

+

∫ ∫
m
[
εpt (k) , εpt

(
k′
)] {

V p
t

[
k + qpt

(
k, k′

)]
− V p

t (k)
}
dF pt

(
k′
)
dF pt (k)

+

∫ ∫
ηt
(
k, k′

) [
qpt
(
k, k′

)
+ qpt

(
k′, k

)]
dF pt

(
k′
)
dF pt (k) .
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First-order conditions. First, take any optimal qet and

q̂t
(
k, k′

)
= qet

(
k, k′

)
+ αq1

{
V e
t (k) > V e

t

(
k′
)}
− αq1

{
V e
t (k) < V e

t

(
k′
)}

= qet
(
k, k′

)
+ αq∆t

(
k, k′

)
,

where αq is an arbitrary scalar. Second, take any optimal εet (k), an arbitrary admissible deviation

δt (k) and a scalar αε, let

ε̂t (k) = εet (k) + αε · δt (k) .

For small αq and αε, we obtain up to second-order terms:

Hpt (ε̂t, q̂t)−Hpt (εet , q
e
t )

= −αε
∫ ∫ 

χ1 [εet (k) , qet (k, k′)]m [εet (k) , εet (k′)] δt (k)
+χ [εet (k) , qet (k, k′)]m1 [εet (k) , εet (k′)] δt (k)
+χ [εet (k) , qet (k, k′)]m2 [εet (k) , εet (k′)] δt (k′)

 dF pt
(
k′
)
dF pt (k)

+αε

∫ ∫ {
m1 [εet (k) , εet (k′)] δt (k)

+m2 [εet (k) , εet (k′)] δt (k′)

}{
V p
t

[
k + qet

(
k, k′

)]
− V p

t (k)
}
dF pt

(
k′
)
dF pt (k)

−αq
∫ ∫

χ2

[
εet (k) , qet

(
k, k′

)]
m
[
εet (k) , εet

(
k′
)]

∆t

(
k, k′

)
dF pt

(
k′
)
dF pt (k)

+αq

∫ ∫
m
[
εet (k) , εet

(
k′
)]
V p′
t

[
k + qet

(
k, k′

)]
∆t

(
k, k′

)
dF pt

(
k′
)
dF pt (k)

+αq

∫ ∫
ηt
(
k, k′

) [
∆t

(
k, k′

)
+ ∆t

(
k′, k

)]
dF pt

(
k′
)
dF pt (k)

= αε

∫ ∫


m1 [εet (k) , εet (k′)] {V p
t [k + qet (k, k′)]− V p

t (k)}
+m2 [εet (k′) , εet (k)] {V p

t [k′ − qet (k, k′)]− V p
t (k′)}

−χ1 [εet (k) , qet (k, k′)]m [εet (k) , εet (k′)]
−χ [εet (k) , qet (k, k′)]m1 [εet (k) , εet (k′)]
−χ [εet (k′) ,−qet (k, k′)]m2 [εet (k′) , εet (k)]

 δt (k) dF pt
(
k′
)
dF pt (k)

+
αq
2

∫ ∫
m
[
εet (k) , εet

(
k′
)] {

V p′
t

[
k + qet

(
k, k′

)]
− χ2

[
εet (k) , qet

(
k, k′

)]}
∆t

(
k, k′

)
dF pt

(
k′
)
dF pt (k)

+
αq
2

∫ ∫
m
[
εet (k) , εet

(
k′
)] {

V p′
t

[
k′ + qet

(
k′, k

)]
− χ2

[
εet
(
k′
)
, qet
(
k′, k

)]}
∆t

(
k′, k

)
dF pt

(
k′
)
dF pt (k)

= αε

∫ ∫


m1 [εet (k) , εet (k′)] {V p
t [k + qpt (k, k′)]− V p

t (k)}
+m1 [εet (k) , εet (k′)] {V p

t [k′ − qpt (k, k′)]− V p
t (k′)}

−χ1 [εet (k) , qpt (k, k′)]m [εet (k) , εet (k′)]
−χ [εet (k) , qpt (k, k′)]m1 [εet (k) , εet (k′)]
−χ [εet (k′) ,−qpt (k, k′)]m1 [εet (k) , εet (k′)]

 δt (k) dF pt
(
k′
)
dF pt (k)

+
αq
2

∫ ∫
m
[
εet (k) , εet

(
k′
)]{ V p′

t [k + qet (k, k′)]− V p′

t [k′ − qet (k, k′)]
−χ2 [εet (k) , qet (k, k′)] + χ2 [εet (k′) ,−qet (k, k′)]

}
∆t

(
k, k′

)
dF pt

(
k′
)
dF pt (k) ,

where we apply∆t (k, k′)+∆t (k′, k) = 0 in the second and third equality and qet (k, k′)+qet (k′, k) = 0

in the third equality.

If {εet , qet } is optimal, this must be negative. Thus the integrand in the second term must be

zero everywhere. Then the FOC for qet (k, k′) becomes

V p′
t

[
k + qet

(
k, k′

)]
− V p′

t

[
k′ − qet

(
k, k′

)]
− χ2

[
εet (k) , qet

(
k, k′

)]
+ χ2

[
εet
(
k′
)
,−qet

(
k, k′

)]
= 0.
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In other words, qpt (k, k′) is the solution to

qpt
(
k, k′

)
= arg max

q

{
V p
t (k + q) + V p

t

(
k′ − q

)
− χ (εet (k) , q)− χ

(
εet
(
k′
)
,−q

)}
.

Moreover, for the FOC of εet , since δt (k) is an arbitrary admissible deviation, we must have

m1

[
εet (k) , εet

(
k′
)]{ V p

t [k + qpt (k, k′)]− V p
t (k)− χ [εet (k) , qpt (k, k′)]

+V p
t [k′ − qpt (k, k′)]− V p

t (k′)− χ [εet (k′) ,−qpt (k, k′)]

}
−χ1

[
εet (k) , qpt

(
k, k′

)]
m
[
εet (k) , εet

(
k′
)]

≤ 0, if εet (k) = 0,
= 0, if εet (k) ∈ (0, 1) ,
≥ 0, if εet (k) = 1.

,

Thus the constrained effi ciency solution of εpt must satisfy

Γpt (εpt ) (k) ≡ arg max
ε∈[0,1]

{∫
Spt
(
k, k′, ε, εpt

(
k′
))
m
[
ε, εpt

(
k′
)]
dFt

(
k′
)}

,

where

Spt
(
k, k′, ε, ε′

)
= V p

t

[
k + qpt

(
k, k′

)]
− V p

t (k)− χ
[
ε, qpt

(
k, k′

)]
+V p

t

[
k′ − qpt

(
k, k′

)]
− V p

t

(
k′
)
− χ

[
ε′,−qpt

(
k, k′

)]
.

C.6 Proof of Proposition 3

Proof. Denote vwt as the co-state to at, the Hamiltonian is thus given by

Hwt ≡ u
(

at
1 + ρwt

)
− e−r(T+∆−t)dδt + vwt

(
ρ̇wt

1 + ρwt
at + dδt

)
. (C.4)

The evolution of costate is given by rvwt − v̇wt =
∂Hwt
∂at

, i.e.

v̇wt = rvwt −
1

1 + ρwt
u′
(

at
1 + ρwt

)
− vwt

ρ̇wt
1 + ρwt

. (C.5)

The first order condition with respect to dδt is

vwt = e−r(T+∆−t). (C.6)

Since the first order condition is independent to at and δt, all banks must have the same value of

costate. But since the evolution of costate, C.5, depends on at, the only possibility is that all banks

have the same at for all t > 0. This implies δt (a) is given by result (b), such that they hold K

units of reserve balance for all t > 0. Substituting (C.6) to the evolution of costate, (C.5), we have

ρ̇wt = −er(T+∆−t)u′ (K) .

The solution to the above ODE is

ρwt = ρwT + er∆
[
er(T−t) − 1

] u′ (K)

r
.
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Notice that at T the bank problem is

max
qT

{
U (k + qT )− e−r∆ (1 + ρwT ) qT

}
.

To yield k + qT = K, we have

ρwT = er∆U ′ (K)− 1.

Q.E.D.

C.7 Proof of Proposition 4

Proof. [εt (k) = 0 is always an equilibrium] For any k and ε, if all the other banks choose zero

search intensity, then

∂
∫
St (k, k′, ε, 0)m (ε, 0) dFt (k′)

∂ε
=

∫ [
k′ − k

2
V ′′t (k)

]2 −κλ0[
κ (ε)− 1

2 (V ′′t (k) + V ′′t (k′))
]2dFt (k′) < 0.

This implies that the bank k’s optimal response is ε = 0. Thus εt (k) = 0 ∀k is a self-fulfilling
equilibrium.

[Possibility of multiple equilibria] To show that it is possible to have multiple equilibria under

some parameter conditions, we provide a necessary and suffi cient condition for εt (k) = 1 ∀k to be
an equilibrium. Suppose all the other banks choose search intensity εt = 1. Then for any k and ε,

we have

∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε

=

∫ [
k′ − k

2
V ′′t (k)

]2 (λ− λ0)κ− λ−λ0
2 [V ′′t (k) + V ′′t (k′)]− κλ0[

κ (ε+ 1)− 1
2 (V ′′t (k) + V ′′t (k′))

]2 dFt
(
k′
)

=
(λ− λ0)κ− (λ− λ0)V ′′t (k)− κλ0

[κ (ε+ 1)− V ′′t (k)]2

(
V ′′t (k)

2

)2 ∫ (
k′ − k

)2
dFt

(
k′
)
,

where the second equality is because V ′′t (k) is a constant in k. Thus the suffi cient and necessary

condition for εt (k) = 1 ∀k to be an equilibrium is that V ′′t (k) ≤ λ−2λ0
λ−λ0

κ.

[The largest equilibrium is either εt (k) = 0 ∀k or εt (k) = 1 ∀k] Let εmax
t (k) be the largest

equilibrium search profile. Denote ε̄t = supk {εmax
t (k)} and εt = infk {εmax

t (k)}. We first prove
ε̄t = εt by contradiction. Suppose ε̄t > εt, then

∂2St(k,k′,ε,ε′)m(ε,ε′)
∂ε∂ε′ > 0 implies

∂
∫
St (k, k′, εmax

t (k) , ε̄t)m (εmax
t (k) , ε̄t) dFt (k′)

∂ε
(C.7)

≥ ∂
∫
St (k, k′, εmax

t (k) , εmax
t (k′))m (εmax

t (k) , εmax
t (k′)) dFt (k′)

∂ε
≥ 0
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for any k such that εmax
t (k) > 0. Note that for any k and ε,

∂
∫
St (k, k′, ε, ε̄t)m (ε, ε̄t) dFt (k′)

∂ε

=

∫ [
k′ − k

2
V ′′t (k)

]2 (λ− λ0)κ (ε̄t)
2 − λ−λ0

2 ε̄t [V ′′t (k) + V ′′t (k′)]− κλ0[
κ (ε+ ε̄t)− 1

2 (V ′′t (k) + V ′′t (k′))
]2 dFt

(
k′
)

=
(λ− λ0)κ (ε̄t)

2 − (λ− λ0) ε̄tV
′′
t (k)− κλ0

[κ (ε+ ε̄t)− V ′′t (k)]2

(
V ′′t (k)

2

)2 ∫ (
k′ − k

)2
dFt

(
k′
)
.

Since V ′′t (k) is negative and constant over k, and ε̄t ∈ [0, 1], then equation (C.7) implies that

0 ≤ (λ− λ0)κ (ε̄t)
2− (λ− λ0) ε̄tV

′′
t (k)− κλ0 ≤ (λ− λ0)κ− (λ− λ0)V ′′t (k)− κλ0 for any k. Then

we have
∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε
≥ 0 for any k and ε.

Thus there exists an equilibrium search profile where εt (k) ≡ 1. Apparently this search profile

dominates εmax
t (k), which is a contradiction.

Next we prove ε̄t = 0 or 1 by contradiction. Suppose not, i.e. ε̄t = εt = ε̂ ∈ (0, 1). Then
∂2St(k,k′,ε,ε′)m(ε,ε′)

∂ε∂ε′ > 0 implies that for any k, ε,

∂
∫
St (k, k′, ε, 1)m (ε, 1) dFt (k′)

∂ε
>
∂
∫
St (k, k′, ε, ε̂)m (ε, ε̂) dFt (k′)

∂ε
∝ ∂

∫
St (k, k′, ε̂, ε̂)m (ε, ε̂) dFt (k′)

∂ε
= 0.

Thus there exists an equilibrium search profile where εt (k) ≡ 1, which is a contradiction. Q.E.D.

C.8 Proof of Proposition 5

Proof. Given {Ft}, the value function satisfying (8) is unique. Guess that

Vt (k) = −Htk
2 + Etk +Dt. (C.8)

Then we have

Vt (k + q)− Vt (k)− χ (ε, q) = [Et − 2Htk − (Ht + κε) q] q.

The bargaining solution thus solves

qt
(
k, k′, ε, ε′

)
= arg max

q

{
Vt (k + q) + Vt

(
k′ − q

)
− χ (ε, q)− χ

(
ε′, q

)}
,

= arg max
q

{
−Ht (k + q)2 −Ht

(
k′ − q

)2 − κ (ε+ ε′
)
q2
}
,

=
Ht (k′ − k)

κ (ε+ ε′) + 2Ht
,

and

e−r(T+∆−t)Rt
(
k, k′, ε, ε′

)
=

1

2

[
Vt [k + qt (k, k′, ε, ε′)]− Vt (k)− χ [ε, qt (k, k′, ε, ε′)]
Vt (k′)− Vt [k′ − qt (k, k′, ε, ε′)] + χ [ε′,−qt (k, k′, ε, ε′)]

]
=

1

2

[
Et − 2Htk − (Ht + κε) qt (k, k′, ε, ε′)
+Et − 2Htk

′ + (Ht + κε′) qt (k, k′, ε, ε′)

]
qt
(
k, k′, ε, ε′

)
=

[
Et −Ht

(
k + k′

)
− κ (ε− ε′)

2
qt
(
k, k′, ε, ε′

)]
qt
(
k, k′, ε, ε′

)
.
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Thus the bilateral Federal funds rate is

1 + ρt
(
k, k′, ε, ε′

)
=
Rt (k, k′, ε, ε′)

qt (k, k′, ε, ε′)
= er(T+∆−t)

[
Et −Ht

(
k + k′

)
− κ (ε− ε′)

2
qt
(
k, k′, ε, ε′

)]
.

The trade surplus is given by

St
(
k, k′, ε, ε′

)
≡ Vt

[
k + qt

(
k, k′, ε, ε′

)]
− Vt (k)− χ

[
ε, qt

(
k, k′, ε, ε′

)]
+Vt

[
k′ − qt

(
k, k′, ε, ε′

)]
− Vt

(
k′
)
− χ

[
ε′,−qt

(
k, k′, ε, ε′

)]
,

= −Ht

{[
k +

Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

+

[
k′ − Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

− k2 − k′2
}

−κ
(
ε+ ε′

) [ Ht (k′ − k)

κ (ε+ ε′) + 2Ht

]2

,

=
[Ht (k′ − k)]2

κ (ε+ ε′) + 2Ht
.

The equilibrium search profile is a fixed point function to the following functional:

Γt (εt) (k) ≡ arg max
ε∈[0,1]

{∫
St
[
k, k′, ε, εt

(
k′
)]
m
[
ε, εt

(
k′
)]
dFt

(
k′
)}

(C.9)

= arg max
ε∈[0,1]

{∫
[Ht (k′ − k)]2

κ [ε+ εt (k′)] + 2Ht

[
(λ− λ0) εεt

(
k′
)

+ λ0

]
dFt

(
k′
)}

= arg max
ε∈[0,1]

{
(Ht)

2

κ (ε+ εt) + 2Ht
[(λ− λ0) εεt + λ0]

∫ (
k′ − k

)2
dFt

(
k′
)}

which only depends on Ht and Ft and, is independent of k and k′. The last equality is guaranteed

by Proposition 4. Thus, we write Γt (ε) (k) = Γ (ε;Ht), where the latter is given by (20). The

equilibrium search intensity at t is the fixed point of Γ (εt;Ht), which is any element of Ω (h). The

HJB equation becomes

r
[
−Htk

2 + Etk +Dt

]
= −Ḣtk

2 + Ėtk + Ḋt − a2k
2 + a1k

+
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫ (
k′ − k

)2
dFt

(
k′
)
.

Matching the coeffi cients, we have

rHt = Ḣt + a2 −
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
,

rEt = Ėt + a1 −
1

2

H2
tK

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
,

rDt = Ḋt +
1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt

(
k′
)
,

where the fact that VT (k) = −A2k
2 +A1k implies the terminal conditions

HT = A2, ET = A1, DT = 0.

Q.E.D.
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C.9 Proof of Proposition 6

Proof. Notice that the first-order condition of bank k’s search intensity is

∂
∫
St (k, k′, ε, εt)m (ε, εt) dFt (k′)

∂ε

=
(λ− λ0)κ (εt)

2 + 2 (λ− λ0) εtHt − κλ0

[κ (ε+ ε̄t) + 2Ht]
2 (Ht)

2
∫ (

k′ − k
)2
dFt

(
k′
)
.

Thus ε = 1 if (λ− λ0)κ (εt)
2 + 2 (λ− λ0) εtHt − κλ0 > 0. It implies that the largest equilibrium

satisfies

Γt (εt) (k)

{
= 1, if Ht >

[λ0−(λ−λ0)]κ
2(λ−λ0) ;

0, otherwise.

By rearranging the terms, we obtain the proposition. Q.E.D.

C.10 Proof of Lemma 2

Proof. We first derive the expressions of µ1, µ2, τ1 (H;A, u), J (t;A, u), and τ2 (H;A, u) by solving

the ODEs of Ht with a terminal value Hu = A under εt = 1 and εt = 0. Then we characterize the

equilibrium dynamics.

[Solve the ODE of Ht under εt = 1] If εt = 1, the law of motion of Ht is

Ḣt = rHt − a2 +
λ

4

H2
t

κ+Ht
=

(4r + λ)H2
t + 4 (κr − a2)Ht − 4κa2

4 (κ+Ht)

=
4r + λ

4 (κ+Ht)
(Ht − µ1) (Ht − µ2) , (C.10)

where µ1 and µ2 are the zero point of formula (4r + λ)H2
t + 4 (κr − a2)Ht − 4κa2 = 0, and they

are given by

µ1 ≡ 1

2r + λ
2

{
− (κr − a2)−

[
(κr − a2)2 + a2κ (4r + λ)

]0.5
}
,

µ2 ≡ 1

2r + λ
2

{
− (κr − a2) +

[
(κr − a2)2 + a2κ (4r + λ)

]0.5
}
.

Equation (C.10) can be written as

4r + λ

4
dt =

κ+Ht

(Ht − µ1) (Ht − µ2)
dHt

=
κ+ µ1

µ1 − µ2

· 1

Ht − µ1

dHt −
κ+ µ2

µ1 − µ2

· 1

Ht − µ2

dHt

Given a terminal value condition Hu = A, then Ht satisfies(
r +

λ

4

)
(u− t) =

κ+ µ1

µ1 − µ2

· log

(
A− µ1

Ht − µ1

)
− κ+ µ2

µ1 − µ2

· log

(
A− µ2

Ht − µ2

)
.
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By rearraning the terms, we can write t as a function of Ht:

t = τ1 (Ht;A, u) = u−
(κ+ µ1) log

(
A−µ1
Ht−µ1

)
− (κ+ µ2) log

(
A−µ2
Ht−µ2

)
(
r + λ

4

)
(µ1 − µ2)

.

[Solve the ODE of Ht under εt = 0] If εt = 0, the law of motion of Ht is

Ḣt = rHt − a2 +
λ0

4
Ht =

(
r +

λ0

4

)
Ht − a2. (C.11)

Given a terminal value condition Hu = A, the solution to Ht is

Ht = J (t;A, u) =
a2

r + λ0
4

+

(
A− a2

r + λ0
4

)
e
−
(
r+

λ0
4

)
(u−t)

.

Note that J (t;A, u) is monotone in t. Thus we can get the inverse function:

t = τ2 (H;A, u) = u− 1

r + λ0
4

log

A− a2

r+
λ0
4

H − a2

r+
λ0
4

 = u+
1

r + λ0
4

log

1− H −A
a2

r+
λ0
4

−A

 .

[Characterize the dynamics of εt and Ht] Since the terminal value of HT is fixed, we characterize

the time paths of εt and Ht inversely from T to 0. The characterization is divided into the following

cases.

Case 1.1: A2 ≥ η, Ḣt

∣∣∣
Ht=η,εt=1

> 0, Ḣt

∣∣∣
Ht=η,εt=0

> 0 and τ1 (Ht;A, u) > 0. In this case, as t

decreases from T , the equilibrium solution of εt and Ht is given by εt = 1 and t = τ1 (Ht;A2, T ).

Moreover, according to equation (C.10), Ḣt

∣∣∣
Ht=η,εt=1

> 0 guarantees that Ht is decreasing as t

goes from T to 0 before hitting η. According to the definition of τ1 (Ht;A, u), the time of Ht

hitting η is τ1 (η;A2, T ). A positive τ1 (η;A2, T ) means that Ht decreases to η before time 0. The

condition Ḣt

∣∣∣
Ht=η,εt=0

> 0 guarantees that after Ht hits η, Ht continues to decrease as t goes to

0 and εt = 0 for t < τ1 (η;A2, T ). Note that the necessary and suffi cient parameter conditions for

Ḣt

∣∣∣
Ht=η,εt=1

> 0 and Ḣt

∣∣∣
Ht=η,εt=0

> 0 are a2 < rη+ λ
4
η2

κ+η =
(
r − λ

4 + λ0
2

)
η and a2 <

(
r + λ0

4

)
η,

respectively. Since a2 ≥ 0, then we have
(
r + λ0

4

)
η >

(
r − λ

4 + λ0
2

)
η. Therefore, when A2 ≥ η,

a2 <
(
r − λ

4 + λ0
2

)
η and τ1 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

{
1, if t ≥ τ1 (η;A2, T ) ;
0, otherwise.

Ht =

{
τ−1

1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;
J [t; η, τ1 (η;A2, T )] , otherwise.
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Case 1.2: A2 ≥ η, Ḣt

∣∣∣
Ht=η,εt=1

> 0, Ḣt

∣∣∣
Ht=η,εt=0

≤ 0 and τ1 (Ht;A, u) > 0. In this case,

when hitting η at τ1 (η;A2, T ), Ht will stay at η until time 0. This is because when Ht < η,

Ḣt

∣∣∣
εt=0

< Ḣt

∣∣∣
Ht=η,εt=0

≤ 0. Therefore, when A2 ≥ η, a2 ∈
[(
r + λ0

4

)
η,
(
r − λ

4 + λ0
2

)
η
)
and

τ1 (η;A2, T ) > 0, the paths of εt and Ht are εt = 1 for all t ∈ [0, T ] and

Ht =

{
τ−1

1 (t;A2, T ) , if t ≥ τ1 (η;A2, T ) ;
η, otherwise.

However, this case doesn’t exist due to the following reason. If η > 0, then we have
(
r + λ0

4

)
η >(

r − λ
4 + λ0

2

)
η, which implies that the condition a2 ∈

[(
r + λ0

4

)
η,
(
r − λ

4 + λ0
2

)
η
)
is an empty

set. If η ≤ 0, then the equilibrium path contradicts with that Ht > 0. Combining Case 1.1 and

1.2, we obtain Case (a-i) of the lemma.

Case 1.3: (1) A2 ≥ η; (2) Ḣt

∣∣∣
Ht=η,εt=1

≤ 0 or τ1 (η;A2, T ) ≤ 0. This is the counterpart

of Case 1.1 and 1.2. If τ1 (η;A2, T ) ≤ 0, then Ht will never hit η before the time goes to zero.

If Ḣt

∣∣∣
Ht=η,εt=1

≤ 0, then µ2 ≥ η and Ht monotonically converges to µ2 before hitting η. Both

conditions imply that εt = 1 for all t ∈ [0, T ] and Ht = τ−1
1 (t;A2, T ). This establishes Case (a-ii)

in the lemma.

Case 2.1: A2 < η, Ḣt

∣∣∣
Ht=η,εt=0

< 0, Ḣt

∣∣∣
Ht=η,εt=1

< 0 and τ2 (η;A2, T ) > 0. In this case, as t

decreases from T , the equilibrium solution of εt and Ht is εt = 0 and Ht = J (t;A2, T ). Moreover,

according to equation (C.11), Ḣt

∣∣∣
Ht=η,εt=0

< 0 guarantees that Ht is increasing as t goes from

T to 0 before hitting η. According to the definition of τ2 (Ht;A, u), the time of Ht hitting η is

τ2 (η;A2, T ). A positive τ2 (η;A2, T ) means that Ht increases to η before time 0. The condition

Ḣt

∣∣∣
Ht=η,εt=1

< 0 guarantees that after Ht hits η, Ht continues to increase as t goes to 0 and εt = 1

for t ≤ τ2 (η;A2, T ). The necessary and suffi cient parameter conditions for Ḣt

∣∣∣
Ht=η,εt=0

< 0 and

Ḣt

∣∣∣
Ht=η,εt=1

< 0 are a2 >
(
r + λ0

4

)
η and a2 >

(
r − λ

4 + λ0
2

)
η, respectively. Since λ > λ0 and

η > A2 > 0, we have
(
r + λ0

4

)
η >

(
r − λ

4 + λ0
2

)
η. Therefore, when A2 < η, a2 >

(
r + λ0

4

)
η and

τ2 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

{
0, if t > τ2 (η;A2, T ) ;
1, otherwise.

Ht =

{
J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;

τ−1
1 (t; η, τ2 (η;A2, T )) , otherwise.

Case 2.2: A2 < η, Ḣt

∣∣∣
Ht=η,εt=0

< 0, Ḣt

∣∣∣
Ht=η,εt=1

≥ 0 and τ2 (η;A2, T ) > 0. In this case,

when hitting η at τ2 (η;A2, T ), Ht will stay at η until time 0. This is because when Ht > η,
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Ḣt

∣∣∣
εt=1

> Ḣt

∣∣∣
Ht=η,εt=1

≥ 0. Therefore, when A2 < η, a2 ∈
((
r + λ0

4

)
η,
(
r − λ

4 + λ0
2

)
η
]
and

τ2 (η;A2, T ) > 0, the paths of εt and Ht are

εt =

{
0, if t > τ2 (η;A2, T ) ;
1, otherwise.

Ht =

{
J (t;A2, T ) , if t ≥ τ2 (η;A2, T ) ;
η, otherwise.

However, since
(
r + λ0

4

)
η >

(
r − λ

4 + λ0
2

)
η, this case doesn’t exist. Combining Case 2.1 and 2.2,

we obtain Case (b-i) of the lemma.

Case 2.3: (1) A2 < η; (2) Ḣt

∣∣∣
Ht=η,εt=0

≥ 0 or τ2 (η;A2, T ) ≤ 0. This is the counterpart of

Case 2.1 and 2.2. If τ2 (η;A2, T ) ≤ 0, then Ht will never hit η before the time goes to zero. If

Ḣt

∣∣∣
Ht=η,εt=0

≥ 0, then a2

r+
λ0
4

≤ η and Ht monotonically converges to a2

r+
λ0
4

before hitting η. Both

conditions imply that εt = 0 for all t ∈ [0, T ] and Ht = J (t;A2, T ). This establishes Case (b-ii) of

the lemma. Q.E.D.

C.11 Proof of Lemma 3

Proof. Plug the closed-form solution (24) and εt (k) ≡ εt into the KFE (9), we can get

Ḟt (kw) = m (εt, εt)


∫
k>kw

∫
1
{
k + Ht(k′−k)

2κε+2Ht
≤ kw

}
dFt (k′) dFt (k)

−
∫
k≤kw

∫
1
{
k + Ht(k′−k)

2κε+2Ht
> kw

}
dFt (k′) dFt (k)


= m (εt, εt)


∫
k>kw Ft

[
2
(

1 + κεt
Ht

)
kw −

(
1 + 2κεt

Ht

)
k
]
dFt (k)

−
∫
k≤kw

[
1− Ft

[
2
(

1 + κεt
Ht

)
kw −

(
1 + 2κεt

Ht

)
k
]]
dFt (k)


= m (εt, εt)

[∫
Ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
dFt

(
k′
)
− Ft (k)

]
.

Then the probability density function solves the following PDE:

ḟt (k) = m (εt, εt)

[
2

(
1 +

κεt
Ht

)∫
ft

[
2

(
1 +

κεt
Ht

)
k −

(
1 +

2κεt
Ht

)
k′
]
ft
(
k′
)
dk′ − ft (k)

]
.

(C.12)

To characterize the dynamics of moment function, we take advantage of the Fourier transform. We

follow the definition of Bracewell (2000) for the Fourier transform:

h∗ (ν) =

∫
e−i2πνxh (x) dx,

where h∗ (·) is the Fourier transform of the function h (·).
Let f∗t (·) be the Fourier transform of the equilibrium pdf ft (·). Then the Fourier transform of

equation (C.12) is
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ḟ∗t (ν) = m (εt, εt)

[
f∗t

(
Ht

2 (Ht + κεt)
ν

)
f∗t

(
Ht + 2κεt

2 (Ht + κεt)
ν

)
− f∗t (ν)

]
. (C.13)

The PDE (C.13) cannot be solved in closed form. However, it facilitates the calculation fo the

moment function which is the derivative of the transform, with respect to ν, at ν = 0. Let us

denote f∗(n)
t (ν) be the n-th derivative of f∗t (ν) with respect to ν. By taking n-th derivative with

respect to ν to both sides of (C.13), we can obtain

ḟ
∗(n)
t (ν) = m (εt, εt)

[
n∑
i=0

Cin
(Ht)

n−i (Ht + 2κεt)
i

2n (Ht + κεt)
n f

∗(n−i)
t

(
Ht

2 (Ht + κεt)
ν

)
f
∗(i)
t

(
Ht + 2κεt

2 (Ht + κεt)
ν

)
− f∗(n)

t (ν)

]
.

(C.14)

Evaluating the above equation at ν = 0, we can get

Ṁn,t = m (εt, εt)

[
n∑
i=0

Cin
(Ht)

n−i (Ht + 2κεt)
i

2n (Ht + κεt)
n Mn−i,tMi,t −Mn,t

]
.

In particular, by definition we have M0,t =
∫
ft (k) dk = 1 and M1,t =

∫
kft (k) dk = K. Moreover,

the second moment of reserve distribution satisfies

Ṁ2,t = m (εt, εt)

[
−Ht (Ht + 2κεt)

2 (Ht + κεt)
2 M2,t +

Ht (Ht + 2κεt)

2 (Ht + κεt)
2 K2

]
.

Solving this first-order ODE gives rise to the solution (33). Q.E.D.

C.12 Derivations of positive measures of liquidity

Price impact. Note that the terms of trade between k and k′ are

1 + ρt
(
k, k′

)
= er(T+∆−t) [Et −Ht

(
k + k′

)]
,

qt
(
k, k′

)
=

Ht (k′ − k)

2 (κεt +Ht)
⇒ k′ = k +

2 (κεt +Ht)

Ht
qt
(
k, k′

)
.

Therefore, given k and q, we can infer the reserve holding of the counterparty k′ (k, q). Thus the

Federal funds rate of a bank k that trades reserves q is given by

log (1 + ρt (k, q)) = r (T + ∆− t) + log
[
Et −Ht

(
k + k′ (k, q)

)]
= r (T + ∆− t) + log [Et − 2kHt] + log

[
1− 2 (κεt +Ht)

Et − 2kHt
q

]
≈ r (T + ∆− t) + log

[
V ′t (k)

]
− 2 (κεt +Ht)

V ′t (k)
q

= r (T + ∆− t) + log
[
V ′t (k)

]
− 2 (κεt +Ht)

−2Ht

q

k

kV ′′t (k)

V ′t (k)

= r (T + ∆− t) + log
[
V ′t (k)

]
+
kV ′′t (k)

V ′t (k)
· q
k
· 1

1−
(

1− V̄ ′′
2κεt

)−1

Denote θV,t (k) ≡ −kV ′′t (k)
V ′t (k)

and ωt ≡
(

1− V̄ ′′

2κεt

)−1
, we get equation (34).
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Return reversal. The average Federal funds rate is

1 + %t = er(T+∆−t) [Et − 2HtK] , (C.15)

then the difference between individual Federal funds rate and the average Federal funds rate is

ρt
(
k, k′

)
− %t = er(T+∆−t) (2K − k − k′)Ht.

Differentiating the rates with respect to time:

%̇t = er(T+∆−t)
(
Ėt − 2KḢt

)
− r (1 + %t) = er(T+∆−t) (2a2K − a1) , (C.16)

ρ̇t
(
k, k′

)
= er(T+∆−t)

[
Ėt − Ḣt

(
k + k′

)]
− r

(
1 + ρt

(
k, k′

))
= er(T+∆−t)

[
−a1 +

(
k + k′

)
a2 +

2K − k − k′
4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
.

This implies

d

dt

[
ρt
(
k, k′

)
− %t

]
= er(T+∆−t) (2K − k − k′) [−a2 +

1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]]
= −

[
a2

Ht
− 1

4

Ht

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]] [
ρt
(
k, k′

)
− %t

]
.

Price dispersion. The standard deviation of the bilateral Federal funds rates is

σρ,t =

{∫ ∫ [
ρt
(
k, k′

)
− %t

]2
dFt

(
k′
)
dFt (k)

}1/2

= er(T+∆−t)Ht

[∫ ∫ (
2K − k − k′

)2
dFt

(
k′
)
dFt (k)

]1/2

= er(T+∆−t)Ht

{∫ ∫ [
(K − k)2 +

(
K − k′

)2
+ 2 (K − k)

(
K − k′

)]
dFt

(
k′
)
dFt (k)

}1/2

= er(T+∆−t)Ht ·
√

2σk,t.

This gives our measure of price dispersion.

Intermediation markup. By definition, the rate spread is

∆ρ,t (k, q)

≡
∫
ρt
(
k + q, k′

)
dFt

(
k′
)
− ρt (k, q)

=

∫
er(T+∆−t) [Et −Ht

(
k + q + k′

)]
dFt

(
k′
)
− er(T+∆−t)

[
Et −Ht

(
k + k +

2 (κεt +Ht)

Ht
q

)]
= er(T+∆−t) [−Ht (k + q +K) + 2kHt + 2 (κεt +Ht) q]

= er(T+∆−t) [−Ht (K − k) + (2κεt +Ht) q] .

Thus the intermediation markup is given by taking ∆ρ,t (k, q) differentiation with respect to q.
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Unilization rate of trade opportunities. By definition,

URt =

∫
k

∫
k′≥km (εt, εt) qt (k, k′) dFt (k′) dFt (k)

TOt

=

∫
k

∫
k′≥k

Ht(k′−k)
2(κεt+Ht)

[
(λ− λ0) ε2

t + λ0

]
dFt (k′) dFt (k)

TOt

=
Ht

[
(λ− λ0) ε2

t + λ0

]
2 (κεt +Ht)

∫
k

∫
k′≥k (k′ − k) dFt (k′) dFt (k)

TOt

=
Ht

[
(λ− λ0) ε2

t + λ0

]
κεt +Ht

.

Extensive margins. We provide a heuristic approach to derive the dynamics of the extensive

margins. Let ∆ be a small time length, and denote mt ≡ m (εt, εt) as the equilibrium matching

rate. Then by definition,

1− P /0t (k) = (1−∆ ·mt)

[
1− P /0t+∆ (k)

]
+ ∆ ·mt · 0,

where 1 − P /0t (k) denotes the probability of no trade over [t, T ] conditional on kt = k, 1 −∆ ·mt

represents the probability of no meetings during [t, t+ ∆], and 0 means the probability of no trade

is 0 given a meeting arrives at t. Take ∆→ 0, we can obtain

Ṗ
/0
t (k) = lim

∆→0

P
/0
t+∆ (k)− P /0t (k)

∆
= −mt

[
1− P /0t (k)

]
.

The evolution of P bt (k) and P st (k) can be derived similarly as follows.

1− P bt (k) = (1−∆ ·mt)
[
1− P bt+∆ (k)

]
+ ∆ ·mt

∫
k′≤k

[
1− P bt+∆

(
k + qt

(
k, k′

))]
dFt

(
k′
)
,

1− P st (k) = (1−∆ ·mt)
[
1− P st+∆ (k)

]
+ ∆ ·mt

∫
k′≥k

[
1− P st+∆

(
k + qt

(
k, k′

))]
dFt

(
k′
)
.

Take ∆→ 0 gives

Ṗ bt (k) = −mt [1− Ft (k)]
[
1− P bt (k)

]
−mt

∫
k′≤k

[
P bt
(
k + qt

(
k, k′

))
− P bt (k)

]
dFt

(
k′
)
,

Ṗ st (k) = −mtFt (k) [1− P st (k)]−mt

∫
k′≥k

[
P st
(
k + qt

(
k, k′

))
− P st (k)

]
dFt

(
k′
)
.

Then the evolution of P intt (k) is

Ṗ intt (k) = Ṗ bt (k) + Ṗ st (k)− Ṗ /0t (k)

= −mt

∫
k′≤k

[
P bt
(
k + qt

(
k, k′

))
− P intt (k)

]
dFt

(
k′
)

−mt

∫
k′≥k

[
P st
(
k + qt

(
k, k′

))
− P intt (k)

]
dFt

(
k′
)
.
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Intensive margins. We provide an heuristic derivation of the absolute trades and net rades.

First, for the individual absolute trades, let ∆ be an infinitesimal time period. Then by the

property of Poisson process,

Qt (k) = ∆ ·m (εt, εt) ·
[∫

k′

∣∣qt (k, k′)∣∣ dFt (k′)+

∫
k′
Qt+∆

(
k + qt

(
k, k′

))
dFt

(
k′
)]

+ [1−∆ ·m (εt, εt)]Qt+∆ (k) .

Thus the aggregate absolute trades is given by

Qt =

∫
Qt (k) dFt (k)

= ∆ ·m (εt, εt) ·
∫
k

∫
k′

∣∣qt (k, k′)∣∣ dFt (k′) dFt (k)

+

∫
k

{
∆ ·m (εt, εt) ·

∫
k′
Qt+∆

(
k + qt

(
k, k′

))
dFt

(
k′
)

+ [1−∆ ·m (εt, εt)]Qt+∆ (k)

}
dFt (k)

= ∆ ·m (εt, εt) ·
∫
k

∫
k′

∣∣qt (k, k′)∣∣ dFt (k′) dFt (k) +Qt+∆,

where the last equality is given by the definition of Qt (k) and Qt. Taking ∆ → 0, we can obtain

the following ODEs for Qt (k) and Qt:

Q̇t (k) = lim
∆→0

Qt+∆ (k)−Qt (k)

∆

= −m (εt, εt) ·
[∫

k′

∣∣qt (k, k′)∣∣ dFt (k′)+

∫
k′
Qt+∆

(
k + qt

(
k, k′

))
dFt

(
k′
)]

+m (εt, εt)Qt (k) ,

and

Q̇t = lim
∆→0

Qt+∆ −Qt
∆

= −m (εt, εt) ·
∫
k

∫
k′

∣∣qt (k, k′)∣∣ dFt (k′) dFt (k)

= −m (εt, εt)
Ht

2 (κεt +Ht)

∫
k

∫
k′

∣∣k′ − k∣∣ dFt (k′) dFt (k) .

This implies

Q =

∫ T

0
m (εt, εt)

Ht

2 (κεt +Ht)

(∫
k

∫
k′

∣∣k′ − k∣∣ dFt (k′) dFt (k)

)
dt. (C.17)

Second, for the individual net Federal funds purchase, it satisfies

Lt (k) = ∆ ·mt

∫
Ht (k′ − k)

2 (κεt +Ht)
dFt

(
k′
)

+ ∆ ·mt

∫
Lt+∆

(
k + qt

(
k, k′

))
dFt

(
k′
)

+ (1−∆ ·mt)Lt+∆ (k)

= ∆ ·mt
Ht (K − k)

2 (κεt +Ht)
+ ∆ ·mt

∫
Lt+∆

(
k + qt

(
k, k′

))
dFt

(
k′
)

+ (1−∆ ·mt)Lt+∆ (k) .
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We guess and verify that Lt (k) = Θ1,t − Θ2,tk. Plugging the guessed formula into the above

equation and matching the coeffi cients, we can get

Θ̇1,t

K
= Θ̇2,t =

mtHt

2 (κεt +Ht)
(Θ2,t − 1) .

With terminal condition Θ1,T = Θ2,T = 0, we have the following closed-form solution:

Θ2,t = 1− exp

[
−
∫ T

t

mzHz

2 (κεz +Hz)
dz

]
,

Θ1,t = K ·Θ2,t.

Thus the individual net trades is given by

Lt (k) =

{
1− exp

[
−
∫ T

t

mzHz

2 (κεz +Hz)
dz

]}
(K − k) ,

and the aggregate net trades is

L =

∫
|L0 (k)| dF0 (k) =

{
1− exp

[
−
∫ T

0

mzHz

2 (κεz +Hz)
dz

]}∫
|K − k| dF0 (k) . (C.18)

Federal funds rate. The average Federal funds rate at t is given by equation (C.15). It satisfies

the ODE (C.16) with terminal condition 1+%T = er∆ [A1 − 2A2K], which has the following closed-

form solution:

1 + %t = er∆ (A1 − 2A2K)− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
= er∆

[
1 + γ +

(k+ − 1) iDW − (k− − 1) iER

k+ − k−

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
= er∆

[
1 + γ + iER +

k+ − 1

k+ − k−
∆i

]
− 2a2K − a1

r

[
er(T+∆−t) − er∆

]
.

C.13 Proof of Proposition 7

Proof.

Comparative statics for the length of search. Note that the length of search in this case is

given by

τ2 (η;A2, T ) = T +
1

r + λ0
4

log

1− η −A2
a2

r+
λ0
4

−A2

 . (C.19)

Then the first column of table in the proposition is given by differentiating (C.19). That is,

∂τ2 (η;A2, T )

∂iER
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2

r+
λ0
4

− η(
a2

r+
λ0
4

−A2

)2

[
− 1

2K (k+ − k−)

]
< 0,
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∂τ2 (η;A2, T )

∂iDW
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2

r+
λ0
4

− η(
a2

r+
λ0
4

−A2

)2

[
1

2K (k+ − k−)

]
> 0,

∂τ2 (η;A2, T )

∂K
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

a2

r+
λ0
4

− η(
a2

r+
λ0
4

−A2

)2

[
− iDW − iER

2K2 (k+ − k−)

]
< 0,

∂τ2 (η;A2, T )

∂κ
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

− 1
a2

r+
λ0
4

−A2

[
λ

2 (λ− λ0)
− 1

] < 0,

∂τ2 (η;A2, T )

∂λ0
= − 1

4
(
r + λ0

4

)2 log

1− η −A2
a2

r+
λ0
4

−A2



+
1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

−
κλ

2(λ−λ0)2

(
a2

r+
λ0
4

−A2

)
+ (η −A2) a2

4
(
r+

λ0
4

)2(
a2

r+
λ0
4

−A2

)2


< 0,

∂τ2 (η;A2, T )

∂λ
=

1

r + λ0
4

1

1− η−A2
a2

r+
λ0
4

−A2

1
a2

r+
λ0
4

−A2

κλ0

2 (λ− λ0)2 > 0.

Comparative statics of |qt (k, k′)|. Note that |qt (k, k′)| =
∣∣∣ Ht(k′−k)

2(κεt+Ht)

∣∣∣, and qt (k, k′) = k′−k
2

for any t > τ2 (η;A2, T ). Thus we focus on the comparative statics over t < τ2 (η;A2, T ). The

comparative statics with respect to iER, iDW and K are given by differentiating Ht with respect to

the terminal condition HT = A2. Note that Ht is monotonically decreasing in time in this case, and

solving Ht backwards implies that increasing A2 will shift the path of Ht upward. Since ∂A2

∂iER
< 0,

∂A2

∂iDW
> 0 and ∂A2

∂K < 0, then we must have ∂Ht
∂iER

< 0, ∂Ht
∂iDW

> 0 and ∂Ht
∂K < 0, which gives the

results in the table.

To obtain the comparative statics of |qt (k, k′)| with respect to κ, denote q̃t ≡ Ht
κεt+Ht

. When

εt = 1,
·
q̃t = q̃t (1− q̃t)

[
r − a2

κ

(
1

q̃t
− 1

)
+
λ

4
q̃t

]
,

with
·
q̃t < 0, ∂

·
q̃t
∂κ > 0. Moreover, εt = 1 iff q̃t ≥ η

κ+η = 2λ0
λ − 1. This implies that over t ∈

[0, τ2 (η;A2, T )], the path of q̃t decreases slower and reaches 2λ0
λ − 1 under a larger κ. Therefore,

for any t < τ2 (η;A2, T ), |qt (k, k′)| decreases in κ.
For the comparative statics of |qt (k, k′)| with respect to λ0, note that

∂η
∂λ0

> 0, ∂τ2(η;A2,T )
∂λ0

< 0,

∂J(t;A2,T )
∂λ0

< 0 and
∂ Ḣt|εt=1

∂Ht
> 0. Moreover, for any Ht ∈ [η, µ2], we have Ḣt

∣∣∣
εt=1

< Ḣt

∣∣∣
εt=0

.
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Therefore, when t > τ2 (η;A2, T ), we have ∂Ht
∂λ0

< 0; when t < τ2 (η;A2, T ), Ht decreases slower

and reaches a larger η. Solving the ODE of Ht backwards implies that Ht decreases in λ0 for any

t < τ2 (η;A2, T ). Thus |qt (k, k′)| also decreases in λ0 for any t < τ2 (η;A2, T ).

For the comparative statics of |qt (k, k′)| with respect to λ, note that when t > τ2 (η;A2, T ), εt,

qt (k, k′) andHt are all independent of λ. So we focus on the comparative statics on t < τ2 (η;A2, T ).

First, we show that Ht is concave in t on t < τ2 (η;A2, T ). To see this, note that when εt = 1,
∂Ḣt
∂Ht

> 0 for any Ht ≥ 0. Combining with that the equilibrium Ḣt < 0 for any t, it follows that

Ḧt = ∂Ḣt
∂Ht

Ḣt < 0 on t < τ2 (η;A2, T ).

Next, pick any λ′ > λ and we use x′ to denote the value of an endogenous variable x under λ′.

According to the previous results, we have τ ′2 (η;A2, T ) > τ2 (η;A2, T ) and µ′2 < µ2. The concavity

of Ht in t, and ∂Ḣt
∂λ > 0 guarantee that Ht|λ′ interacts with Ht|λ at most once on t < τ ′2 (η;A2, T ).

Next, simple algebra shows that Ḣτ ′2(η;A2,T )−

∣∣∣
λ′

< Ḣτ ′2(η;A2,T )−

∣∣∣
λ
. Since Hτ ′2(η;A2,T )

∣∣∣
λ′

=

Hτ ′2(η;A2,T )

∣∣∣
λ
, it follows that Ht|λ′ > Ht|λ in the left neighborhood of τ ′2 (η;A2, T ). Moreover,

limt→−∞ Ht|λ′ = µ′2 < µ2 = limt→−∞ Ht|λ, thus there exists a unique point t̂ < τ ′2 (η;A2, T ) such

that Ht|λ′ > Ht|λ for t ∈
(
t̂, τ ′2 (η;A2, T )

)
, and Ht|λ′ < Ht|λ for t < t̂. Since the ODE of Ḣt

is autonomous, then τ ′2 (η;A2, T ) − t̂ is independent of T . Since τ ′2 (η;A2, T ) is increasing in T ,

it follows that t̂ < 0 if and only if T is smaller than a threshold value T̂ . Given λ and λ′, we

can define T̂ by setting t̂ = 0. The monotonicity of τ ′2 (η;A2, T ) in T guarantees the uniqueness

of T̂ . Therefore, when T is small enough, the bilateral trade size |qt (k, k′)| is increasing in λ for
t < τ2 (η;A2, T ).

Comparative statics of L0 (k) and ∂L0(k)
∂k . The solution (38) to Lt (k) implies that it suffi ces

to show the comparative statics of Φ ,
∫ T

0
mtHt

2(κεt+Ht)
dt. Note that

Φ =

∫ T

0

mtHt

2 (κεt +Ht)
dt =

λ

2

∫ τ2(η;A2,T )

0

Ht

κ+Ht
dt+

λ0

2
[T − τ2 (η;A2, T )] .

Thus

∂Φ

∂A2
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂A2
+
λ

2

∫ τ2

0

κ

(κ+Ht)
2

∂Ht

∂A2
dt

= −λ− λ0

2

∂τ2

∂A2
+
λ

2

∫ τ2

0

κ

(κ+Ht)
2

(
− ∂τ2/∂A2

∂τ1 (Ht; η, τ2) /∂Ht

)
dt

= −λ− λ0

2

∂τ2

∂A2
+
λ

2

∂τ2

∂A2

∫ τ2

0

κ

(κ+Ht)
2

(
−Ḣt

)
dt

=

{
−λ− λ0

2
+
λ

2

[
κ

(κ+Hτ2)
− κ

(κ+H0)

]}
∂τ2

∂A2

=

(
λ

2

H0

H0 + κ
− λ0

2

)
∂τ2

∂A2
.
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Since ∂τ2
∂A2

> 0, then ∂Φ
∂A2

< 0 if and only if H0 <
λ0

λ−λ0
κ. Since HT = A2 < η < λ0

λ−λ0
κ, and Ht is

decreasing over t, then ∂Φ
∂A2

< 0 if and only if T is suffi ciently small. Since we assume a small T ,

we can get that

∂L0 (k)

∂iER
∝ (K − k)

∂Φ

∂A2

∂A2

∂iER
⇒ sgn

(
∂L0 (k)

∂iER

)
= sgn (K − k) ,

∂L0 (k)

∂iDW
∝ (K − k)

∂Φ

∂A2

∂A2

∂iDW
⇒ sgn

(
∂L0 (k)

∂iDW

)
= sgn (k −K) ,

∂2L0 (k)

∂k∂iER
∝ − ∂Φ

∂A2

∂A2

∂iER
< 0,

∂2L0 (k)

∂k∂iDW
∝ − ∂Φ

∂A2

∂A2

∂iDW
> 0.

For the comparative statics of Φ w.r.t. κ, note that

∂Φ

∂κ
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂κ
+
λ

2

∫ τ2

0

∂q̃t
∂κ

dt

= −λ− λ0

2

∂τ2

∂κ
+
λ

2

∫ τ2

0

∂q̃t
∂κ

dt.

The first term is positive and the second term is negative.Since τ2 increases in T , then the first

term dominates under a small T . Thus when T is small,

∂L0 (k)

∂κ
∝ (K − k)

∂Φ

∂κ
⇒ sgn

(
∂L0 (k)

∂κ

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂κ
∝ −∂Φ

∂κ
< 0.

For the comparative statics of Φ w.r.t. λ0, we have

∂Φ

∂λ0
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂λ0
+

1

2
[T − τ2 (η;A2, T )] +

λ

2

∫ τ2

0

∂q̃t
∂λ0

dt

= −λ− λ0

2

∂τ2

∂λ0
+

1

2
[T − τ2 (η;A2, T )] +

λ

2

∫ τ2

0

∂q̃t
∂λ0

dt,

where the first two terms are positive and the third term is negatve. Thus when T is small, we

have ∂Φ
∂λ0

> 0, which implies

∂L0 (k)

∂λ0
∝ (K − k)

∂Φ

∂λ0
⇒ sgn

(
∂L0 (k)

∂λ0

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂λ0
∝ − ∂Φ

∂λ0
< 0.

For the comparative statics of Φ w.r.t. λ, we have

∂Φ

∂λ
=

(
λ

2

Hτ2

κ+Hτ2

− λ0

2

)
∂τ2

∂λ
+

1

2

∫ τ2

0

Ht

κ+Ht
dt+

λ

2

∫ τ2

0

∂q̃t
∂λ

dt

= −λ− λ0

2

∂τ2

∂λ
+

1

2

∫ τ2

0

Ht

κ+Ht
dt+

λ

2

∫ τ2

0

∂q̃t
∂λ

dt,
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where the first term is negative and the last two terms are positive. When T is small, the first term

dominates, thus we have ∂Φ
∂λ < 0. This implies

∂L0 (k)

∂λ
∝ (K − k)

∂Φ

∂λ
⇒ sgn

(
∂L0 (k)

∂λ

)
= sgn (k −K) ,

∂2L0 (k)

∂k∂λ
∝ −∂Φ

∂λ
> 0.

For the comparative statics of Φ w.r.t. K, we have ∂Φ
∂K = ∂Φ

∂A2

∂A2
∂K > 0, and

∂L0 (k)

∂K
= 1− exp (−Φ) + exp (−Φ)

∂Φ

∂K
(K − k) ,

∂2L0 (k)

∂k∂K
∝ − ∂Φ

∂A2

∂A2

∂K
< 0.

This implies that
∂L0 (k)

∂K

{
< 0, if k > K + exp(Φ)−1

∂Φ/∂K ,

> 0, otherwise.

Comparative statics of ρt (k, k′). Using equation (21) and (22), we have

Et = e−r(T−t)ET +

∫ T

t
e−r(s−t)

{
a1 −

K

2
·
H2
s

[
(λ− λ0) ε2

s + λ0

]
κεs +Hs

}
ds,

Ht = e−r(T−t)HT +

∫ T

t
e−r(s−t)

{
a2 −

1

4
·
H2
s

[
(λ− λ0) ε2

s + λ0

]
κεs +Hs

}
ds.

Then we can write ρt (k, k′) as

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
(C.20)

+

∫ T

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
·
H2
s

[
(λ− λ0) ε2

s + λ0

]
κεs +Hs

]
ds

}
,

where

ET −
(
k + k′

)
HT = 1 +

k+i
DW − k−iER
k+ − k−

+ γ − iDW − iER
2K (k+ − k−)

(
k + k′

)
. (C.21)

When t > τ2, ∫ T

t
e−rs

λ0

4

∂Hs

∂iDW
ds =

λ0

4

∫ T

t
e
−rs−

(
r+

λ0
4

)
(T−s)

ds
∂A2

∂iDW

= e−rT
[
1− e−

λ0
4

(T−t)
] ∂A2

∂iDW
< e−rT

∂A2

∂iDW

which implies that ∂ρt(k,k
′)

∂iDW
< 0 iff

k + k′ > 2K
k+ − 1 + exp

[
−λ0

4 (T − t)
]

exp
[
−λ0

4 (T − t)
] .
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For t < τ2, note that t = τ1 (Ht; η, τ2 (η;A2, T )). The implicit function theorem implies that

∂

∂iDW

(
λH2

t

κ+Ht

)
= λ

Ht (2κ+Ht)

(κ+Ht)
2

∂Ht

∂iDW

= λ
Ht (2κ+Ht)

(κ+Ht)
2

(
−Ḣt

) ∂τ2 (η;A2, T )

∂A2

∂A2

∂iDW
.

Since the ODE of Ḣt is autonomous with Hτ2 = η, it implies that for any u > 0, we can define the

following M (u):

M (u) =
λ

4

∂τ2 (η;A2, T )

∂A2

∫ τ2(η;A2,T )

τ2(η;A2,T )−u
e−rs

[
Hs (2κ+Hs)

(κ+Hs)
2

(
−Ḣs

)]
ds.

which is independent of time t. Thus we can rewrite ∂ρt(k,k
′)

∂iDW
as

∂ρt (k, k′)

∂iDW
∝ er(T+∆)

{
e−rT

k+ − (k + k′) /2K

k+ − k−
+

(k + k′) /2K − 1

k+ − k−

[
M (τ2 − t) + e−rT

(
1− e−

λ0
4

(T−τ2)
)]}

.

It follows that ∂ρt(k,k
′)

∂iDW
< 0 iff

k + k′ > 2K
k+ − 1 + e−

λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.

Note that M (0) = 0 and M (u) is increasing in u, then the above condition holds for suffi ciently

small τ2 − t. To guarantee the condition holds for all t < τ2, we need a suffi ciently small T .

Similarly, the comparative statics of ρt (k, k′) w.r.t. iER is that when t > τ2,
∂ρt(k,k

′)
∂iER

< 0 iff

k + k′ < 2K
k− − 1 + exp

[
−λ0

4 (T − t)
]

exp
[
−λ0

4 (T − t)
] ;

when t < τ2,
∂ρt(k,k

′)
∂iER

< 0 iff

k + k′ < 2K
k− − 1 + e−

λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.

The comparative statics of ρt (k, k′) w.r.t. K is that when t > τ2,
∂ρt(k,k

′)
∂K < 0 iff

k + k′ < 2K

λ0
4A2

∫ T
t exp [r (T − s)]Hsds− 1 + exp

[
−λ0

4 (T − t)
]

exp
[
−λ0

4 (T − t)
] ;

when t < τ2,
∂ρt(k,k

′)
∂iER

< 0 iff

k + k′ < 2K

∫ T
t er(T−s)

H2
s [(λ−λ0)ε2s+λ0]
4A2(κεs+Hs)

ds− 1 + e−
λ0
4

(T−τ2) −M (τ2 − t) erT

e−
λ0
4

(T−τ2) −M (τ2 − t) erT
.
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The comparative statics of ρt (k, k′) w.r.t. λ, note that ρt (k, k′) is independent of λ on t > τ2.

Thus we focus on t < τ2. In this case,

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
+

∫ T

τ2

e−rs
[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

+

∫ τ2

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

}
,

and the derivative is

∂ρt (k, k′)

∂λ
= er(T+∆)

{
−e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂λ

+e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂λ

+

∫ τ2

t
e−rs

k + k′ − 2K

4
· ∂
∂λ

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2)

{∫ τ2

t
er(τ2−s) ∂

∂λ

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂λ

}
.

Note that we have proved ∂
∂λ

[
λH2

s
κ+Hs

]
> 0, ∂τ2

∂λ > 0. Moreover, for t < τ2, the value of Ht only

depends on η and the time difference τ2−t. This means that
∫ τ2

t er(τ2−s) ∂
∂λ

[
λH2

s
κ+Hs

]
ds is close to 0 for

t close to τ2. This implies that for T suffi ciently small,
∫ τ2

t er(τ2−s) ∂
∂λ

[
λH2

s
κ+Hs

]
ds−(λ− λ0) η ∂τ2

∂λ < 0

for any t < τ2. Then we can get that
∂ρt(k,k

′)
∂λ < (>) 0 iff k + k′ > (<) 2K.

The comparative statics of ρt (k, k′) w.r.t. κ is similar to λ. First, ρt (k, k′) is independent of λ

on t > τ2. Thus we focus on t < τ2. In this case,

∂ρt (k, k′)

∂κ
= er(T+∆)

{
−e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂κ

+e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂κ

+

∫ τ2

t
e−rs

k + k′ − 2K

4
· ∂
∂κ

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2)

{∫ τ2

t
er(τ2−s) ∂

∂κ

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂κ

}
.

Note that we have proved ∂τ2
∂κ < 0. Thus if T is suffi ciently small, we have

∫ τ2

t er(τ2−s) ∂
∂κ

[
λH2

s
κ+Hs

]
ds−

(λ− λ0) η ∂τ2
∂κ > 0 for any t < τ2. This implies that

∂ρt(k,k
′)

∂κ < (>) 0 iff k + k′ < (>) 2K.

The comparative statics of ρt (k, k′) w.r.t. λ0 is as follows. First, when t > τ2, we have

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
+

∫ T

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,
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and
∂ρt (k, k′)

∂λ0
=
k + k′ − 2K

4
er(T+∆)

∫ T

t
e−rs · ∂ [λ0Hs]

∂λ0
ds.

Note that ∂[λ0Ht]
∂λ0

= 4
[
∂Ḣt
∂λ0
− r ∂Ht∂λ0

]
> 0, then we have ∂ρt(k,k

′)
∂λ0

< (>) 0 iff k+k′ < (>) 2K. Second,

when t < τ2, we have

∂ρt (k, k′)

∂λ0
= er(T+∆)

{
−e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ2

∂λ0

+e−rτ2

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ2

∂λ0

+

∫ T

τ2

e−rs
k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ0
ds

+

∫ τ2

t
e−rs

k + k′ − 2K

4
· ∂

∂λ0

[
λH2

s

κ+Hs

]
ds

}
=

k + k′ − 2K

4
er(T+∆−τ2) ×{∫ T

τ2

e−r(s−τ2)∂ [λ0Hs]

∂λ0
ds+

∫ τ2

t
er(τ2−s) ∂

∂λ0

[
λH2

s

κ+Hs

]
ds− (λ− λ0) η

∂τ2

∂λ0

}
.

Since we have proved ∂τ2
∂λ0

< 0, ∂[λ0Hs]
∂λ0

> 0, then when T is small, the term in the big brackets is

positive for any t < τ2. This implies that
∂ρt(k,k

′)
∂λ0

< (>) 0 iff k + k′ < (>) 2K. Q.E.D.

C.14 Proof of Proposition 8

Proof.

Comparative statics of the length of search. The length of search in this case is given by

T − τ1 (η;A2, T ) =
(κ+ µ1) log

(
A2−µ1
η−µ1

)
− (κ+ µ2) log

(
A2−µ2
η−µ2

)
(
r + λ

4

)
(µ1 − µ2)

. (C.22)

Then the first column of table in the proposition is given by differentiating (C.22). Note that in

this case, we have µ1 < 0 < µ2 < η ≤ A2. Therefore, we obtain

∂ [T − τ1 (η;A2, T )]

∂iER
=

(κ+A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
− 1

2K (k+ − k−)

]
< 0,

∂ [T − τ1 (η;A2, T )]

∂iDW
=

(κ+A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
1

2K (k+ − k−)

]
> 0,

∂ [T − τ1 (η;A2, T )]

∂K
=

(κ+A2)(
r + λ

4

)
(A2 − µ1) (A2 − µ2)

[
− iDW − iER

2K2 (k+ − k−)

]
< 0,

∂ [T − τ1 (η;A2, T )]

∂λ0
= − κ+ η

(η − µ1) (η − µ2)
(
r + λ

4

) κλ

2 (λ− λ0)2 < 0,
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For the comparative statics w.r.t. κ, we define q̃t ≡ Ht
κ+Ht

. Following the derivations in C.13,

we have
·
q̃t = (1− q̃t)

[
λ

4
q̃2
t +

(
r +

a2

κ

)
q̃t −

a2

κ

]
,

with
·
q̃t > 0, ∂

·
q̃t
∂κ > 0. Moreover, εt = 1 iff q̃t ≥ η

κ+η = 2λ0
λ − 1. This implies that over t ∈

[τ1 (η;A2, T ) , T ], when κ is larger, the q̃t increases faster from 2λ0
λ −1, and the terminal value A2

A2+κ

is smaller. Therefore, it takes less time for q̃t to increase from 2λ0
λ −1 to A2

A2+κ , i.e. T − τ1 (η;A2, T )

decreases in κ.

For the comparative statics w.r.t. λ, we define h̃t ≡ λ (q̃t + 1). Note that h̃t ∈ [2λ0, 2λ]. Then

we have ·
h̃t =

(
2λ− h̃t

){ 1

4λ
h̃2
t +

[
1

λ

(
r +

a2

κ

)
− 1

2

]
h̃t +

λ

4
− r − 2a2

κ

}
> 0.

Moreover, we also have

∂
·
h̃t
∂λ

= 2

{
1

4λ
h̃2
t +

[
1

λ

(
r +

a2

κ

)
− 1

2

]
h̃t +

λ

4
− r − 2a2

κ

}
+
(

2λ− h̃t
)[1

4
− 1

4λ2 h̃
2
t −

1

λ2

(
r +

a2

κ

)
h̃t

]
,

∂2
·
h̃t

∂λ∂h̃t
=

3

4λ2 h̃
2
t +

2

λ2

(
r +

a2

κ

)
h̃t −

5

4
,

with ∂2
·
h̃t

∂λ∂h̃t

∣∣∣∣∣
h̃t=2λ

> 0. This implies that

∂
·
h̃t
∂λ

∣∣∣∣∣∣
h̃t=2λ

= 2

(
r +

λ

4

)
> 0,

∂
·
h̃t
∂λ

∣∣∣∣∣∣
h̃t=λ

= −r − 3a2

κ
< 0,

and ∂
·
h̃t
∂λ has a unique minimum on h̃t ∈ [λ, 2λ], and is maximized at h̃t = 2λ. Since 2λ0 ∈ (λ, 2λ),

then ∂
·
h̃t
∂λ

∣∣∣∣∣
h̃t=2λ0

< 0 iff 2λ0 is below a threshold point h̃∗. Note that h̃T = λ
(

A2
κ+A2

+ 1
)
increases in

λ, and h̃τ1 = 2λ0, then τ1 decreases in λ if h̃τ1 and h̃T are both below h̃
∗. Therefore, T−τ1 (η;A2, T )

increases in λ if λ0 and λ are both suffi ciently small.

Comparative statics of |qt (k, k′)| . We focus on the comparative statics over t > τ1 (η;A2, T ),

during which q is variable. The comparative statics w.r.t. iER, iDW and K are given by differentiat-

ing Ht w.r.t. A2.Similar to the proof in C.13, Ht increases in A2. Then we must have
∂|qt(k,k′)|
∂iER

< 0,
∂|qt(k,k′)|
∂iDW

> 0 and ∂|qt(k,k′)|
∂K < 0.
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For the comparative statics w.r.t. κ, the proof for the length of search shows that over t ∈
[τ1 (η;A2, T ) , T ], when κ is larger, the q̃t increases faster from 2λ0

λ −1, and the terminal value A2
A2+κ

is smaller. Therefore,the path of q̃t over [τ1 (η;A2, T ) , T ] shifts downward under a larger κ, which

implies ∂|qt(k,k′)|
∂κ < 0.

For the comparative statics w.r.t. λ0, note that Ht is independent of λ0 on t ∈ [τ1 (η;A2, T ) , T ].

Thus we have ∂|qt(k,k′)|
∂λ0

= 0.

For the comparative statics w.r.t. λ, note that Ḣt increases in λ. This implies that as time goes

from T to τ1, Ht decreases faster from A2 under a larger λ. Thus we must have
∂|qt(k,k′)|

∂λ < 0.

Comparative statics of L0 (k) and ∂L0(k)
∂k . Following the proof in C.13, it suffi ces to show the

comparative statics of Φ. Note that

Φ =

∫ T

0

mtHt

2 (κεt +Ht)
dt =

λ

2

∫ T

τ1(η;A2,T )

Ht

κ+Ht
dt+

λ0

2
τ1 (η;A2, T ) .

Thus

∂Φ

∂A2
=

λ− λ0

2

∂τ1

∂A2
− λ

2

∂τ1

∂A2

∫ T

τ1

κ

(κ+Ht)
2dHt

=
λ− λ0

2

∂τ1

∂A2
− λ

2

∂τ1

∂A2

(
κ

κ+ η
− κ

κ+A2

)
=

∂τ1

∂A2

κλ0 −A2 (λ− λ0)

2 (κ+A2)
.

Since ∂τ1
∂A2

< 0, then ∂Φ
∂A2

> 0 iff κ < λ−λ0
λ0

A2. Thus we assume a suffi ciently small κ such that

∂L0 (k)

∂iER
∝ (K − k)

∂Φ

∂A2

∂A2

∂iER
⇒ sgn

(
∂L0 (k)

∂iER

)
= sgn (k −K)

∂L0 (k)

∂iDW
∝ (K − k)

∂Φ

∂A2

∂A2

∂iDW
⇒ sgn

(
∂L0 (k)

∂iDW

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂iER
∝ − ∂Φ

∂A2

∂A2

∂iER
> 0,

∂2L0 (k)

∂k∂iDW
∝ − ∂Φ

∂A2

∂A2

∂iDW
< 0.

For the comparative statics w.r.t. κ, we have

∂Φ

∂κ
=
λ− λ0

2

∂τ1

∂κ
+
λ

2

∫ T

τ1

∂q̃t
∂κ

dt,

where the first term is positive and the second term is negative. Since we have assumed η > 0, it

requires λ ∈ (λ0, 2λ0). When λ→ λ+
0 , we have τ1 → T− and

lim
λ→λ+

0

∂Φ

∂κ
= lim

λ→λ+
0

λ− λ0

2

∂τ1

∂κ
= 0+.
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When λ→ 2λ−0 , we have τ1 → 0+ and

lim
λ→2λ−0

∂Φ

∂κ
=
λ

2

∫ T

0

∂q̃t
∂κ

dt < 0.

This implies that ∂Φ
∂κ < 0 when λ is suffi ciently large relative to λ0. As a consequence,

∂L0 (k)

∂κ
∝ (K − k)

∂Φ

∂κ
⇒ sgn

(
∂L0 (k)

∂κ

)
= sgn (k −K) ,

∂2L0 (k)

∂k∂κ
∝ −∂Φ

∂κ
> 0.

For the comparative statics w.r.t. λ0, we have

∂Φ

∂λ0
=
λ− λ0

2

∂τ1

∂λ0
+

1

2
τ1 > 0.

It follows that
∂L0 (k)

∂λ0
∝ (K − k)

∂Φ

∂λ0
⇒ sgn

(
∂L0 (k)

∂λ0

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂λ0
∝ − ∂Φ

∂λ0
< 0.

For the comparative statics of Φ w.r.t. λ, we define ĥt ≡ λq̃t−λ0. Simple algebra reveals that on

t ∈ ĥt ∈ [τ1 (η;A2, T ) , T ], ĥt ∈
[
λ0 − λ, λ A2

κ+A2
− λ0

]
⊂ (−λ0, λ− λ0),

·
ĥt > 0, ∂

·
ĥt
∂λ

∣∣∣∣∣
ĥt=−λ0

= −a2
κ <

0, ∂
·
ĥt
∂λ

∣∣∣∣∣
ĥt=λ−λ0

= r + λ
4 > 0, and ∂

·
ĥt
∂λ is negative (positive) if ĥt is below (above) a threshold value

ĥ∗ ∈ (−λ0, λ− λ0). It implies that when λ0−λ and λ A2
κ+A2

−λ0 are both below ĥ∗, or equivalently

λ0/λ and λ are both suffi ciently small, we must have that ∂ĥt
∂λ > 0 and ∂τ1

∂λ < 0. Moreover, we can

write Φ as

Φ =
λ

2

∫ T

τ1

q̃tdt+
λ0

2
τ1 (η;A2, T )

=
1

2

∫ T

τ1

(λq̃t − λ0) dt+
λ0

2
T =

1

2

∫ T

τ1

ĥtdt+
λ0

2
T.

Given the above conditions on λ and λ0, we can get ∂Φ
∂λ > 0. It implies

∂L0 (k)

∂λ
∝ (K − k)

∂Φ

∂λ
⇒ sgn

(
∂L0 (k)

∂λ

)
= sgn (K − k) ,

∂2L0 (k)

∂k∂λ
∝ −∂Φ

∂λ
< 0.

For the comparative statics of Φ w.r.t. K, we have ∂Φ
∂K = ∂Φ

∂A2

∂A2
∂K < 0, and

∂L0 (k)

∂K
= 1− exp (−Φ) + exp (−Φ)

∂Φ

∂K
(K − k) ,

80



∂2L0 (k)

∂k∂K
∝ − ∂Φ

∂A2

∂A2

∂K
> 0.

This implies that
∂L0 (k)

∂K

{
< 0, if k < K + exp(Φ)−1

∂Φ/∂K ,

> 0, otherwise.

Comparative statics of ρt (k, k′). The proof is similar to Section C.13. For the comparative

statics of ρt (k, k′) w.r.t. iDW , we can take derivative to C.20. When t > τ1 (η;A2, T ), we have

∂ρt (k, k′)

∂iDW
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+
λ

4

(
k + k′ − 2K

) ∫ T

t
e−rs

∂

∂iDW

[
H2
s

κ+Hs

]
ds

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+
(
k + k′ − 2K

) ∂A2

∂iDW
λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

t
e−rs

Hs (2κ+Hs)

(κ+Hs)
2 (−dHs)

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − t)

}
,

where we define

M̃ (u) ≡ λ

4

∂τ1 (η;A2, T )

∂A2

∫ T

T−u
e−rs

Hs (2κ+Hs)

(κ+Hs)
2 (−dHs) ,

which is positive and independent of t. Then we have ∂ρt(k,k
′)

∂iDW
< 0 iff

k + k′ > 2K
k+ − M̃ (T − t) erT

1− M̃ (T − t) erT
.

When t < τ1 (η;A2, T ), we have

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
+

∫ T

τ1

e−rs
[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

+

∫ τ1

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,
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and

∂ρt (k, k′)

∂iDW
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − τ1)

−e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂A2

∂A2

iDW

+e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂A2

∂A2

iDW

}
= er(T+∆)

{
e−rT

[
k+

k+ − k−
− k + k′

2K (k+ − k−)

]
+

(k + k′ − 2K)

2K (k+ − k−)
M̃ (T − τ1)

+
k + k′ − 2K

2K (k+ − k−)
e−rτ1

(λ− λ0)

4
η
∂τ1

∂A2

}
.

Thus we have ∂ρt(k,k
′)

∂iDW
< 0 iff

k + k′ > 2K
k+ − M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η
4

∂τ1
∂A2

.

We can also derive the comparative statics w.r.t. iER in a similar way. The result is that when

t > τ1 (η;A2, T ), ∂ρt(k,k
′)

∂iER
< 0 iff

k + k′ < 2K
k− − M̃ (T − t) erT

1− M̃ (T − t) erT
.

When t < τ1 (η;A2, T ), ∂ρt(k,k
′)

∂iER
< 0 iff

k + k′ < 2K
k− − M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η

4
∂τ1
∂A2

1− M̃ (T − τ1) erT − er(T−τ1) (λ−λ0)η
4

∂τ1
∂A2

.

For the comparative statics w.r.t. K, note that when t > τ1, we have

∂ρt (k, k′)

∂K
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− λ

2

∫ T

t
e−rs

H2
s

κ+Hs
ds

+
λ

4

(
k + k′ − 2K

) ∫ T

t
e−rs

∂

∂K

[
H2
s

κ+Hs

]
ds

}
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− λ

2

∫ T

t
e−rs

H2
s

κ+Hs
ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − t)

}
.

Thus ∂ρt(k,k
′)

∂K < 0 iff

k + k′ < 2K
λ

4A2

∫ T
t er(T−s) H2

s
κ+Hs

ds− M̃ (T − t) erT

1− M̃ (T − t) erT
.
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When t < τ1, we have

∂ρt (k, k′)

∂K
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− 1

2

∫ T

t
e−rs

[
(λ− λ0) ε2

s + λ0

]
H2
s

κεs +Hs
ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − τ1)

−e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂A2

∂A2

K

+e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂A2

∂A2

K

}
= er(T+∆)

{
e−rT

(
iDW − iER

)
(k + k′)

2K2 (k+ − k−)
− 1

2

∫ T

t
e−rs

[
(λ− λ0) ε2

s + λ0

]
H2
s

κεs +Hs
ds

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
M̃ (T − τ1)

−
(
iDW − iER

)
(k + k′ − 2K)

2K2 (k+ − k−)
e−rτ1

(λ− λ0)

4
η
∂τ1

∂A2

}
.

Thus ∂ρt(k,k
′)

∂K < 0 iff

k + k′ < 2K

∫ T
τ1
er(T−s)

[(λ−λ0)ε2s+λ0]H2
s

4A2(κεs+Hs)
ds− M̃ (T − t) erT − er(T−τ1) (λ−λ0)

4 η ∂τ1
∂A2

1− M̃ (T − t) erT − er(T−τ1) (λ−λ0)
4 η ∂τ1

∂A2

.

For the comparative statics w.r.t. λ, we have that when t > τ1,

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
+

∫ T

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds,

and
∂ρt (k, k′)

∂λ
=
k + k′ − 2K

4
er(T+∆)

∫ T

t
e−rs · ∂

∂λ

[
λH2

s

κ+Hs

]
ds.

Note that ∂
∂λ

[
λH2

s
κ+Hs

]
= 4

[
∂Ḣt
∂λ − r

∂Ht
∂λ

]
> 0. This implies that ∂ρt(k,k

′)
∂λ < 0 iff k + k′ < 2K. When

t < τ1, we have

ρt
(
k, k′

)
= er(T+∆)

{
e−rT

[
ET −

(
k + k′

)
HT

]
+

∫ T

τ1

e−rs
[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λH2

s

κ+Hs

]
ds

+

∫ τ1

t
e−rs

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0Hs

]
ds

}
,
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and

∂ρt (k, k′)

∂λ
= er(T+∆)

{
−e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂λ

+e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂λ

+

∫ T

τ1

e−rs
k + k′ − 2K

4
· ∂
∂λ

[
λH2

s

κ+Hs

]
ds

+

∫ τ1

t
e−rs

k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ
ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ T

τ1

e−r(s−τ1) ∂

∂λ

[
λH2

s

κ+Hs

]
ds+

∫ τ1

t
er(τ1−s)∂ [λ0Hs]

∂λ
ds

+ (λ− λ0) η
∂τ1

∂λ

}
,

where in the brackets the first term is positive and the last two terms are negative. When λ, λ0 and

T are suffi ciently small, the first term dominates, and we have that ∂ρt(k,k
′)

∂λ < 0 iff k + k′ < 2K.

For the comparative statics w.r.t. κ, we have that when t > τ1,

∂ρt (k, k′)

∂κ
=
k + k′ − 2K

4
er(T+∆)

∫ T

t
e−rs · ∂

∂κ

[
λH2

s

κ+Hs

]
ds.

Note that ∂
∂κ

[
λH2

s
κ+Hs

]
= 4

[
∂Ḣt
∂κ − r

∂Ht
∂κ

]
< 0 due to ∂Ḣt

∂κ < 0 and ∂Ht
∂κ > 0. This implies that

∂ρt(k,k
′)

∂κ < 0 iff k + k′ > 2K. When t < τ1, we have

∂ρt (k, k′)

∂λ
= er(T+∆)

{
−e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂κ

+e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂κ

+

∫ T

τ1

e−rs
k + k′ − 2K

4
· ∂
∂κ

[
λH2

s

κ+Hs

]
ds

+

∫ τ1

t
e−rs

k + k′ − 2K

4
· ∂ [λ0Hs]

∂κ
ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ T

τ1

e−r(s−τ1) ∂

∂κ

[
λH2

s

κ+Hs

]
ds+

∫ τ1

t
er(τ1−s)∂ [λ0Hs]

∂κ
ds

+ (λ− λ0) η
∂τ1

∂κ

}
,

where the first term is negative and the last two terms are positive. When λ, λ0 and T are

suffi ciently small, the first term dominates, and we have that ∂ρt(k,k
′)

∂λ < 0 iff k + k′ > 2K.

For the comparative statics w.r.t. λ0, we have that when t > τ1, ρt (k, k′) is independent of λ0.
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When t < τ1, we have

∂ρt (k, k′)

∂λ0
= er(T+∆)

{
−e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λη

2

κ+ η

]
∂τ1

∂λ0

+e−rτ1

[
a1 −

(
k + k′

)
a2 +

k + k′ − 2K

4
· λ0η

]
∂τ1

∂λ0

+

∫ τ1

t
e−rs

k + k′ − 2K

4
· ∂ [λ0Hs]

∂λ0
ds

}
=

k + k′ − 2K

4
er(T+∆)

{∫ τ1

t
er(τ1−s)∂ [λ0Hs]

∂λ0
ds+ (λ− λ0) η

∂τ1

∂λ0

}
.

Note that ∂[λ0Ht]
∂λ0

= 4
[
∂Ḣt
∂λ0
− r ∂Ht∂λ0

]
> 0 and ∂τ1

∂λ0
> 0, we have that ∂ρt(k,k

′)
∂λ0

< 0 iff k + k′ < 2K.

Q.E.D.

C.15 Proof of Proposition 9

Proof. The proposition is a restatement of equations (12) and (14). Q.E.D.

C.16 Proof of Lemma 4

Proof. The proof follows Lemma 2. Q.E.D.

C.17 Proof of Proposition 10

Proof. To prove the ineffi ciencies on extensive margin, it is straightforward by showing that

τp1 (η;A2, T ) > τ1 (η;A2, T ) and τp2 (η;A, T ) < τ2 (η;A, T ). To prove the ineffi ciencies on intensive

margin, it suffi ces to show that Ḣp
t > Ḣt for any H

p
t = Ht. To see this, note that the laws of motion

of two variables can be written as

Ḣt = rHt − a2 +
1

4

H2
t [(λ− λ0) · 1 {Ht ≥ η}+ λ0]

κ · 1 {Ht ≥ η}+Ht
,

Ḣp
t = rHp

t − a2 +
1

2

(Hp
t )

2
[(λ− λ0) · 1 {Ht ≥ ηp}+ λ0]

κ · 1 {Hp
t ≥ ηp}+Hp

t

.

Since η = ηp, we must have Ḣp
t > Ḣt for any H

p
t = Ht. Then the terminal condition H

p
T = HT = A2

implies that Hp
t < Ht for any t. Then the size of bilateral reallocation must satisfy∣∣qpt (k, k′)∣∣ =

Hp
t |k′ − k|

2 (Hp
t + κ)

<
Ht |k′ − k|
2 (Ht + κ)

=
∣∣qt (k, k′)∣∣

whenever there is active reallocation. Q.E.D.

D Extension: Heterogeneous agents with peripheral traders

We guess and verify the closed-form solutions. First, we guess the banks’value function is Vt (k) =

−Htk
2 +Etk +Dt, and the peripheral trader’s value function is Ṽt

(
k̃
)

= −H̃tk̃
2 + Ẽtk̃ + D̃t. The
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terms of trade of a meeting between banks is similar to the baseline model, i.e.

St
(
k, k′

)
=

H2
t (k′ − k)2

κ1 (ε+ ε′) + 2κ0 + 2Ht
, (D.23)

qt
(
k, k′

)
=

Ht (k′ − k)

κ1 (ε+ ε′) + 2κ0 + 2Ht
. (D.24)

The choice of optimal search intensity is given by equation (20). Thus the optimal search intensity

of the most liquid equilibrium is given by

εt =

{
1, if Ht ≥ η̃ ≡ κ1

[
λ

2(λ−λ0) − 1
]
− κ0,

0, otherwise.

For the meetings between a bank and a peripheral trader, they solve

max
R,q

[
Vt (k + q)− e−r(T−t+∆)R− Vt (k)− χ (0, q)

]θ
×
[
Ṽt

(
k̃ − q

)
+ e−r(T−t+∆)R− Ṽt

(
k̃
)]1−θ

.

The maximized surplus and optimal trade size are given by

S̃t

(
k, k̃
)

=

[
Et − Ẽt + 2

(
H̃tk̃ −Htk

)]2

4
[
Ht + H̃t + κ0

] , (D.25)

q̃t

(
k, k̃
)

=
Et − Ẽt + 2

(
H̃tk̃ −Htk

)
2
[
Ht + H̃t + κ0

] . (D.26)

Therefore, the HJB for peripheral traders is

rṼt

(
k̃
)

=
·
Ṽ t

(
k̃
)

+ (1− θ)ϕ
∫
S̃t

(
k, k̃
)
dFt (k) .

By matching coeffi cients we can obtain

·
H̃t = rH̃t +

(1− θ)ϕH̃2
t

Ht + H̃t + κ0

, with H̃T = 0;

·
Ẽt = rẼt − (1− θ)ϕH̃t

Et − Ẽt − 2HtKt

Ht + H̃t + κ0

, with ẼT = 1 + iRRP ;

·
D̃t = rD̃t − (1− θ)ϕ

∫ [
Et − Ẽt − 2Htk

]2

4
[
Ht + H̃t + κ0

] dFt (k) , with D̃t = 0.

Given H̃T = 0, ẼT = 1 + iRRP , we can get that H̃t ≡ 0 and Ẽt =
(
1 + iRRP

)
e−r(T−t). Thus the

bilateral Federal funds rate in a meeting between bank and peripheral trader is

1 + ρ̃t

(
k, k̃
)

= er(T+∆−t)
[

1− θ
2

(
Et − Ẽt − 2Htk

)
+ Ẽt

]
= er(T+∆−t)

[
(1− θ) (Ht + κ0) q̃t

(
k, k̃
)

+ Ẽt

]
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On the other hand, the HJB for banks is

rVt (k) = V̇t (k) + u (k) +

∫
1

2
St
(
k, k′

)
m (εt, εt) dFt

(
k′
)

+ θϕϑ

∫
S̃t

(
k, k̃
)
dF̃t

(
k̃
)
,

which implies

Ḣt = rHt − a2 +
1

4

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
+
θϕϑH2

t

Ht + κ0
, (D.27)

Ėt = rEt − a1 +
Kt

2

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
+ θϕϑHt

Et − Ẽt
Ht + κ0

, (D.28)

Dt = rDt −
1

4

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt

(
k′
)
− θϕϑ

[
Et − Ẽt

]2

4 [Ht + κ0]
. (D.29)

It follows that

d
(
Et − Ẽt

)
dt

=

(
r +

θρϕHt

Ht + κ0

)(
Et − Ẽt

)
− a1 +

Kt

2

H2
t

κ1εt + κ0 +Ht

[
(λ− λ0) ε2

t + λ0

]
, (D.30)

and

K̇t = ϕϑ

∫ Et − Ẽt + 2
(
H̃tk̃ −Htk

)
2
[
Ht + H̃t + κ0

] dFt (k) = ϕϑ
Et − Ẽt − 2HtKt

2 [Ht + κ0]
, (D.31)

with the boundary condition K0 = K and ET − ẼT = A1 − 1− iRRP . We focus on the numerical
solution.

The most liquid equilibrium. To characterize the dynamics of the most liquid equilibrium, we

first define ω1, ω2 and ω3 as the three real roots of H to the equation (the three real roots must

exist by graphic proof)

0 =

(
r +

λ

4
+ θϕϑ

)
H3 +

[
r (2κ0 + κ1)− a2 +

κ0λ

4
+ θϕϑ (κ0 + κ1)

]
H2

+ [rκ0 (κ0 + κ1)− a2 (2κ0 + κ1)]H − a2κ0 (κ0 + κ1) .

Let A ≡ r+ λ
4 +θϕϑ, B ≡ r (2κ0 + κ1)−a2 + κ0λ

4 +θϕϑ (κ0 + κ1), C ≡ rκ0 (κ0 + κ1)−a2 (2κ0 + κ1)

and D ≡ −a2κ0 (κ0 + κ1), then the solution to ω1, ω2 and ω3 are given by

ω1 =
−B
3A

+
3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

,

ω2 =
−B
3A

+
−1 +

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
−1−

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

,
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ω3 =
−B
3A

+
−1−

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
+

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

+
−1 +

√
3i

2

3

√√√√BC

6A2
− B3

27A3
− D

2A
−

√(
BC

6A2
− B3

27A3
− D

2A

)2

+

(
C

3A
− B2

9A2

)3

.

Next, denote β1, β2 and β3 as the solution to the follow linear equation system: 1 1 1
ω2 + ω3 ω1 + ω3 ω1 + ω2

ω2ω3 ω1ω3 ω1ω2

 β1

β2

β3

 =

 1
− (2κ0 + κ1)
κ0 (κ1 + κ0)

 ,
and define

µ̃1 ≡ 1

2r + λ0
2 + 2θρϕ

{
− (κ0r − a2)−

[
(κ0r − a2)2 + a2κ0 (4r + λ0 + 4θρϕ)

]0.5
}
,

µ̃2 ≡ 1

2r + λ0
2 + 2θρϕ

{
− (κ0r − a2) +

[
(κ0r − a2)2 + a2κ0 (4r + λ0 + 4θρϕ)

]0.5
}
,

τ̃1 (H;A, u) ≡ u− 1

r + λ
4 + θρϕ

[
β1 log

(
A− ω1

H − ω1

)
+ β2 log

(
A− ω2

H − ω2

)
+ β3 log

(
A− ω3

H − ω3

)]
,

and

τ̃2 (H;A, u) ≡ u−
(κ0 + µ̃1) log

(
A−µ̃1
H−µ̃1

)
− (κ0 + µ̃2) log

(
A−µ̃2
H−µ̃2

)
(
r + λ0

4 + θρϕ
)

(µ̃1 − µ̃2)
.

Then the following proposition characterizes the path of equilibrium search prfile in the most liquid

equilibrium.

Proposition 12 (a). Suppose A2 ≥ η̃.
(a-i). If Ḣt

∣∣∣
εt=1,Ht=η̃

> 0 and τ̃1 (η̃;A2, T ) > 0, then we have

εt =

{
1, if t ≥ τ̃1 (η̃;A2, T ) ;
0, otherwise.

Ht =

{
τ̃−1

1 (t;A2, T ) , if t ≥ τ̃1 (η̃;A2, T ) ;

τ̃−1
2 (t; η̃, τ̃1 (η̃;A2, T )) , otherwise.

(a-ii). Otherwise, we have εt = 1 for all t ∈ [0, T ] and Ht = τ̃−1
1 (t;A2, T ).

(b). Suppose A2 < η̃.

(b-i). If Ḣt

∣∣∣
εt=0,Ht=η̃

< 0 and τ̃2 (η̃;A2, T ) > 0, then we have

εt =

{
0, if t > τ̃2 (η̃;A2, T ) ;
1, otherwise.

Ht =

{
τ̃−1

2 (t;A2, T ) , if t ≥ τ̃2 (η̃;A2, T ) ;

τ̃−1
1 (t; η̃, τ̃2 (η̃;A2, T )) , otherwise.

(b-ii). Otherwise, we have εt = 0 for all t ∈ [0, T ] and Ht = τ̃−1
2 (t;A2, T ).

Proof. The proof follows Lemma 2. Q.E.D.
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E Extension: Federal Funds Brokerage

In this section we model the brokerage of Federal funds following Lagos & Rocheteau (2007). In

practice, Federal funds brokers reach out their banks’ contact for matchmaking. Consider the

following timing of actions. Having secured a pair of banks for potential Federal funds trading, the

broker negotiates with each banks about its brokerage fee. In this stage, the broker does not reveal

the identities of counterparties but informs the banks about the reserve balances held by their

counterparties (the suffi cient information banks need to know to initiate Federal funds trade in this

model). This prevents the side-trading between the counterparty banks circumventing the broker’s

fee. Having determined the brokerage fees, the identities are revealed and the two banks negotitate

the terms of trade like any bilateral Federal funds trades we described before. The brokerage fee

is settled in numéraire at T + ∆. We assume the matching rate between a broker and the bank

counterparties is α, thus the contact rate of banks with a broker is αν, where ν is the measure of

active brokers. Brokers are free entry with entry cost ψ per broker.

We solve the outcome backward. Consider that a broker has identified a k-bank and a k′-bank

at t. Each bank anticipates their trade surplus from trading with the arranged counterparties as

0.5St (k, k′). Denote Yt (k, k′) as the brokerage fee paid by k-bank for arranging the match with

k′-bank; vice versa for the brokerage fee Yt (k′, k) paid by k′-bank. To the k-bank, the surplus of

brokerage is 0.5St (k, k′) − Yt (k, k′). To the broker, the surplus of brokeraging the side of k-bank

is simply Yt (k, k′). Thus, the brokerage fee solves the following Nash bargaining problem:

Yt
(
k, k′

)
= arg max

y

{
y
[
0.5St

(
k, k′

)
− y
]}
.

Hence the bargaining solution is

Yt
(
k, k′

)
= Yt

(
k′, k

)
= 0.25St

(
k, k′

)
.

The value of the broker, Jt, solves the following HJB equation

rJt = J̇t + α

∫ ∫ [
Yt
(
k, k′

)
+ Yt

(
k′, k

)]
dFt

(
k′
)
dFt (k) , where JT = 0.

Denote the dependence of Jt on the broker size ν as Jt (ν). In the equilibrium, ν is determined by

the free-entry condition to the brokers:

ψ = J0 (ν) .

The bank’s HJB is

rVt (k) = V̇t (k)+u (k)+ max
εt∈[0,1]

∫
1

2
St
(
k, k′, εt, εt

(
k′
))
m
(
εt, εt

(
k′
))
dFt

(
k′
)
+αν

∫
1

4
St
(
k, k′, 0, 0

)
dFt

(
k′
)

89



With quadratic utility function, we guess and verify Vt (k) = −Htk
2 + Etk +Dt, the solution is

rVt (k) = V̇t (k) + u (k) +
1

2

(Ht)
2

κ (ε+ εt) + 2Ht
[(λ− λ0) εεt + λ0]

∫ (
k′ − k

)2
dFt

(
k′
)

+
αν

8
Ht

∫ (
k′ − k

)2
dFt

(
k′
)

By matching coeffi cients we obtain(
r +

αν

8

)
Ht = Ḣt + a2 −

1

4

H2
t

κεt +Ht

[
(λ− λ0) ε2

t + λ0

]
, (E.32)

thus αν changes the discount rate to the banks. The surplus function is

St
(
k, k′, εt

)
=

[Ht (k′ − k)]2

2 (κεt +Ht)

and the broker’s HJB is

rJt = J̇t +
α

2

∫ ∫
St
(
k, k′, 0

)
dFt

(
k′
)
dFt (k) (E.33)

= J̇t +
α

4
Ht

[∫
k2dFt (k)−K2

]
The solution is

J0 (ν) =
α

4

∫ T

0
e−rtHt

[∫
k2dFt (k)−K2

]
dt, (E.34)

where∫
k2dFt (k)

=

∫
k2dF0 (k) exp

{
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
+K2

∫ t

0
exp

{
−
∫ t

z
m (εs, εs)

Hs (Hs + 2κεs)

2 (Hs + κεs)
2 ds− αν

2
(t− z)

}[
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 +

αν

2

]
dz

= K2 +

[∫
k2dF0 (k)−K2

]
exp

{
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
Thus the solution to J0 (α) can be written as

J0 (ν) =
α

4

[∫
k2dF0 (k)−K2

] ∫ T

0
e−rtHt exp

{
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
dt.

Thus the equilibrium matchmaking is

ψ =
α

4

[∫
k2dF0 (k)−K2

] ∫ T

0
e−rtHt exp

{
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
dt. (E.35)

The following proposition characterizes the comparative statics of the equilibrium measure of bro-

kers with respect to policy and technology parameters.
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Proposition 13 Suppose κ is suffi ciently small. The comparative statics of ν are

iER iDW K

ν − + −

Proof. Note that J0 (∞) = 0 and J0 (0) > 0. For the existence of equilibrium we assume

ψ < J0 (0). Due to free entry, we focus on the equilibrium ν∗ with J ′0 (ν∗) < 0. We define

Mt ≡ e−rtHt exp

{
−
∫ t

0
m (εz, εz)

Hz (Hz + 2κεz)

2 (Hz + κεz)
2 dz − αν

2
t

}
,

which implies
Ṁt

Mt
= −3

8
αν − a2

Ht
− m (εt, εt)

4

Ht

Ht + κεt

(
2κεt

Ht + κεt
+ 1

)
< 0,

and
∂

∂Ht

(
Ṁt

Mt

)
=
a2

Ht
− m (εt, εt)

4

κεt

(Ht + κεt)
2

(
4κεt

Ht + κεt
− 1

)
.

Thus a suffi cient condition for ∂
∂Ht

(
Ṁt
Mt

)
> 0 is κεt

Ht+κεt
< 1

4 , which requires a suffi ciently small κ.

Given this condition and note that M0 = H0, we can obtain that the path of Mt shifts upward if

the path of Ht shifts upward. Combining with the result that ∂Ht
∂A2

> 0, we can obtain that

∂J0 (ν)

∂A2
=

∫ T

0

∂J0 (ν)

∂Mt

∂Mt

∂A2
dt > 0.

By implicit function theorem, we can obtain ∂ν∗

∂A2
> 0. Given ∂A2

∂iER
< 0, ∂A2

∂iDW
> 0 and ∂A2

∂K < 0,

this establishes our proposition. Q.E.D.

F Extension: Payment Shocks

Since Poole (1968) there has been a long history of analyzing the effects of payment flow on the

Federal funds market. In this extension we study the role of payment on disintermediation. Suppose

that banks are receiving and sending exogenous and stochastic payment flows of reserve balances.

There are two types of payment flows: lumpy or continuous. Lumpy payments occur occasionally at

the arrival rate ζ, with the amount w (negative value means outflow of reserve balances) drawn from

a symmetric distribution G with mean 0 and standard deviation σL. Continuous payments occur

continuously that follows a Brownian motion with mean µ and volatility σC . Thus the aggregate

inflow of reserve balances from payment flow is µ. The HJB equation becomes

rVt (k) = V̇t (k) + u (k) + max
ε∈[0,1]

∫
1

2
St
(
k, k′, ε, εt

(
k′
))
m
(
ε, εt

(
k′
))
dFt

(
k′
)

(F.36)

+ζ

∫
[Vt (k + w)− Vt (k)] dG (w) + µ

∂

∂k
Vt (k) +

σ2
C

2

∂2

∂k2
Vt (k) .
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Given {Ft}, the value function in an equilibrium is given by

Vt (k) = −Htk
2 + Etk +Dt, (F.37)

where Ht, Et and Dt are given by the solutions to the following initial-value ODE problems

Ḣt = rHt − a2 +
1

4

H2
t

[
(λ− λ0) ε2

t + λ0

]
κεt +Ht

, (F.38)

Ėt = rEt − a1 +
Kt

2

H2
t

[
(λ− λ0) ε2

t + λ0

]
κεt +Ht

+ 2µHt, (F.39)

Ḋt = rDt −
1

4

H2
t

[
(λ− λ0) ε2

t + λ0

]
κεt +Ht

∫
k′2dFt

(
k′
)

+
(
ζσ2

L + σ2
C

)
Ht − µEt, (F.40)

where HT = A2, ET = A1 and DT = 0. The equilibrium search profile of Ω (St, Ft) is given by

εt (k) =

{
1, if Ht ≥ η;
0, otherwise.

(F.41)

The Federal funds purchased qt (k, k′) and the Federal funds rate ρt (k, k′) are given by

qt
(
k, k′

)
=

Ht (k′ − k)

2 (κεt +Ht)
, (F.42)

ρt
(
k, k′

)
= er(T+∆−t) [Et −Ht

(
k + k′

)]
. (F.43)

Note that Ht does not depend on the payment shocks, while Et is only affected by µ. The

following Proposition summarize the grid-locking effect of payment shocks.

Proposition 14 The comparative statics of the length of search, τ̄ , the amount of Federal funds

purchased, qt (k, k′) and the Federal fund rates, ρt (k, k′) are given by the following table

τ̄ q (k, k′, τ) ρ (k, k′, τ)

ζ 0 0 0
µ 0 0 −
σ 0 0 0

Proof. Since Ht is independent of the payment shocks, the comparative statics of τ̄ and qt over

payment shock parameters are zero. For ρt, the comparative statics is non-zero only for µ. Note

that a higher µ means a higher Kt and a larger 2µHt. This implies a larger Ėt. Since ET is given,

it means Et decreases in µ. Thus ρt decreases in µ. Q.E.D.

Intuitively, a larger µ means the excess reserves increase faster. This implies a lower marginal

value of holding reserves, leading to lower Federal funds rates.
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G Extension: Counterparty Risk

Afonso et al. (2011) documents the importance of counterparty risk in explaining the rise of Fed-

eral funds rate and decline Federal funds trade during the crisis. Our model can be extended to

incorporate two kinds of counterparty risk. Consider that there is probability 1−pL that, after the
terms of trade is determined, the Federal funds lender cannot deliver the corresponding reserves to

the borrower and the trade has to be cancelled. Also, there is a probability 1− pB that the Federal
funds borrower cannot repay R when it is due. The borrower’s surplus is thus given by

pL

[
Vt (k + q)− pBe−r(T+∆−t)R

]
− pLVt (k)− χ (ε, q) .

The lender’s surplus is given by

pL

[
Vt
(
k′ − q

)
+ pBe

−r(T+∆−t)R
]
− pLVt

(
k′
)
− χ

(
ε′,−q

)
.

The solution to Nash bargaining problem becomes

qt
(
k, k′, ε, ε′

)
=

Ht (k′ − k)

κ/pL · (ε+ ε′) + 2Ht
, (G.44)

Rt
(
k, k′, ε, ε′

)
=
er(T+∆−t)

pB

[
Et −Ht

(
k + k′

)
− κ (ε− ε′)

2pL
qt
(
k, k′, ε, ε′

)]
qt
(
k, k′, ε, ε′

)
, (G.45)

ρ
(
k, k′, τ

)
=
R (k, k′, τ)

q (k, k, τ)
=
er(T+∆−t)

pB

[
Et −Ht

(
k + k′

)
− κ (ε− ε′)

2pL
qt
(
k, k′, ε, ε′

)]
, (G.46)

St
(
k, k′, ε, ε′

)
=

pL [Ht (k′ − k)]2

κ/pL · (ε+ ε′) + 2Ht
. (G.47)

The optimal search intensity in the most liquid equilibrium is

εt =

{
1, if Ht ≥ κ

pL

[
λ

2(λ−λ0) − 1
]

;

0, otherwise.

The solution to the value function is that Vt (k) = −Htk
2 + Etk +Dt, where

Ḣt = rHt − a2 +
pL
4

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where HT = A2; (G.48)

Ėt = rEt − a1 +
KpL

2

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

]
, where ET = A1; (G.49)

Ḋt = rDt −
pL
4

H2
t

κ/pL · εt +Ht

[
(λ− λ0) ε2

t + λ0

] ∫
k′2dFt

(
k′
)
, where DT = 0. (G.50)

Overall, the effects of higher counterparty risk (a higer 1− pL) are isomorphic to the effects of
higher transaction cost κ and lower matching rate λ and λ0.
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H Algorithm of Simulation and Estimation

Simulation. Let us denote N as the number of banks, i ∈ {1, 2, ..., N} as the index of individual
banks. Since the size of peripheral traders is redundant for simulation, we assume there is only

one peripheral trader and denote it as i = N + 1. We also denote m ∈ N as the index for bilateral
meetings, where a smallerm means an earlier meeting. Since the number of banks is finite, the total

number of meetings is also finite. Moreover, denote k0 (i) as the initial reserve balances of bank i

before entering the Federal funds market, and km (i) as the reserve balances of bank i after meeting

m takes place. Note that k0 (i) is given by banks’empirical excess reserves divided by bank assets,

and km (i) 6= km−1 (i) only if bank i is one of the counterparties in meeting m. It is important to

note that the mass of an individual bank is normalized to 1, and the search intensity λ, λ0 and ϕ

represent the search intensity for an individual bank. Thus the total mass of banks is N , and the

contact rate for a bank with another bank is m(εt,εt)
N . There are N(N−1)

2 pairs of bilateral meetings

between banks and N pairs of bilateral meetings between a bank and a peripheral trader. All these

meetings are independent Poisson process. Thus the sum of all these meetings follows a Poisson

process with intensity N(N−1)
2

m(εt,εt)
N + Nϕ = N−1

2 m (εt, εt) + Nϕ. We simulate the discretized

version of the model via the following algorithm.

1. Given the model parameters and policy parameters, we numerically solve the paths of Ht, εt

via Proposition 12 and solve the paths of Et and Kt via the ODEs (D.30) and (D.31).

2. Given the path of εt, simulate a Poisson process for bilateral meetings up to time T via a

thinning algorithm:24

(a) Set a suffi ciently large λmax (such that λmax > λ). Generate a random integer M̂

distributed as Poisson with mean
(
N−1

2 λmax +Nϕ
)
T . If M̂ = 0 stop.

(b) Generate M̂ random numbers distributed as i.i.d. uniforms on (0, 1), i.e. U1, ..., UM̂ ,

and reset Um = T · Um, m ∈
{

1, ..., M̂
}
.

(c) Place the Um in ascending order to obtain the order statistics U(1) < U(2) < ... < U(M̂).

(d) Set t̂m = U(m).

(e) For each t̂m, generate an i.i.d. uniform on (0, 1), Ûm. If

Ûm ≤
N−1

2 m
(
εt̂m , εt̂m

)
+Nϕ

N−1
2 λmax +Nϕ

,

then keep t̂m. Otherwise, drop it.

24See Sigman (2007) for a detailed description and proof of the thinning algorithm.
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(f) For each kept t̂m, draw a pair of integers p̂m = {i, j} with 1 ≤ i < j ≤ N + 1 from the

weighted distribution j

Pr (i, j) =


N−1

2
m(εt̂m ,εt̂m)

N−1
2
m(εt̂m ,εt̂m)+Nϕ

2
N(N−1) , if i, j ≤ N,

Nϕ
N−1

2
m(εt̂m ,εt̂m)+Nϕ

1
N , if j = N + 1.

(g) For each kept t̂m and p̂m, we relabel them with {tm, pm}Mm=1, where tm < tm+1 andM is

the number of kept t̂m. The sequence of {tm, pm}Mm=1 is the Poisson process for bilateral

meetings for our simulation. and denote the number of kept trade according to the rule.

Update kn (i) and kn (j).

3. Update individual reserve balances and bilateral terms of trade: denote km (i), qm (i) and

ρm as bank i’s reserve balances after meeting m, bank i’s cumulative absolute Federal funds

trade after meeting m, and the bilateral Federal funds rate in meeting m. We start with the

data k0 (i) and set q0 (i) = 0 by definition. For each meeting m, if i ∈ pm, then update km (i),

qm (i) and ρm according to the theoretical formulae. For any i /∈ pm, do not update km (i)

and qm (i).

4. Use the sequence {km (i) , qm (i) , ρm} to calculate the aggregate moments and regression co-
effi cients.

Estimation. The simulated method of moments estimation follows a standard two-step proce-

dure.25 For each quarter, we simulate the model for S = 2, 000 times.

25See Adda & Cooper (2003) for the reference on simulated method of moments.
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