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Abstract 

 

Using firm-level R&D and patent data for 88 countries, we find that country climate vulnerability 
negatively affects firms’ R&D investment and innovation performance. This effect operates 
through the decreased responsiveness of R&D investment to investment opportunities (i.e., 
investment efficiency), reduced incentives to innovate, and lower private value of new innovations. 
The effect is more pronounced for firms with longer product development cycles and more 
attentive to climate change and exists in both developed and developing countries. The silver lining 
is that climate vulnerability increases the ratio of patents on climate change mitigation technologies 
(CCMTs) in innovations. Finally, we find similar results when using climate-related natural 
disasters as an identification strategy. Overall, our findings suggest that climate vulnerability 
hinders corporate innovation activities in general, but it also facilitates innovation in CCMTs. 
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1. Introduction 

Climate change has become one of the most pressing issues of our time. Global warming and 

more frequent extreme weather events substantially impact society and the economy (e.g., Stern, 

2008; Intergovernmental Panel on Climate Change, 2014, 2018). For example, the global 

economic growth rate is reduced by roughly 0.25 and 1.3 percentage points per year due to 

temperatures and tropical cyclones (Burke, Hsiang, and Miguel, 2015; Carleton and Hsiang, 2016). 

Despite the massive economic effects, there is a lack of comprehensive evidence on the 

mechanisms for the long-term economic growth effects of climate change.1 In this study, we 

propose a mechanism from a corporate innovation perspective, one of the key determinants of 

productivity growth (e.g., Griliches, 2007; Kung and Schmid, 2015) that may explain the adverse 

growth effects of climate change. Specifically, we investigate how climate vulnerability influences 

corporate R&D investment and innovation output around the world.  

Climate vulnerability is the propensity or predisposition to be adversely affected by climate 

change and comprises sensitivity or susceptibility to harm (IPCC, 2014). It also represents the lack 

of capacity to cope with and adapt to climate change, thereby determining how severe the climate 

change impacts could be for an entity. A recent Deloitte survey of 1,168 financial executives across 

Europe shows that most companies perceive significant pressure of climate change. But few have 

a governance and steering mechanism in place to develop and implement comprehensive climate 

strategies.2 As vulnerability to climate hazards poses a threat to firm survival and growth, and 

innovation is a critical strategy for sustainable development, our paper provides the first 

 
1 Previous studies suggest that climate change could affect economic growth rate through its impacts on capital 
accumulation and people’s propensity to save as well as labor productivity (e.g., Fankhauser and Tol, 2005; Graff 
Zivin and Neidell, 2014). 
2 See the Deloitte European CFO survey in 2019 (https://www2.deloitte.com/us/en/insights/topics/strategy/impact-
and-opportunities-of-climate-change-on-business.html). 

https://www2.deloitte.com/us/en/insights/topics/strategy/impact-and-opportunities-of-climate-change-on-business.html
https://www2.deloitte.com/us/en/insights/topics/strategy/impact-and-opportunities-of-climate-change-on-business.html
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comprehensive cross-country analysis that has important practical implications for policymakers 

and managers. 

The gist is that climate change creates new business risks that may impair firm performance 

and profitability. For example, climate variability and extreme events (e.g., drought, flooding, 

heatwaves, storms, etc.) can disrupt companies’ supply chains and business operations, reduce 

asset value and earnings, increase operational costs (e.g., relocation costs and insurance costs), and 

affect business sustainability.3 Besides the most obvious physical risks, firms are exposed to 

transition risks that arise from society’s response to climate change, such as changes in 

technologies, markets, and policies and regulations that can increase business costs, undermine the 

viability of existing products/services, or hurt the value of investments.4 The costs and risks 

associated with climate change may severely impact companies’ bottom lines, increase uncertainty 

about investment returns, and accentuate the financial risks associated with innovation and R&D 

activities.  

Meanwhile, motivating innovation is challenging for most firms (e.g., Manso, 2011; He and 

Tian, 2013), as innovation is a risky and costly investment with long-term uncertain payoffs and a 

 
3 For example, drought and water scarcity could cause increased production costs or production disruptions and reduce 
revenues for semiconductor companies, as manufacturing semiconductors requires large volumes of ultra-pure water. 
This also affects many other companies as semiconductors are essential components of electronic devices. For 
companies in the software and services industry, especially those who operate data centers that consume large amounts 
of energy, the rising temperatures make energy-consuming facilities and equipment more expensive to cool and 
increases operating costs. The severe flooding across Thailand in 2011 disrupted Western Digital Technologies’ 
manufacturing of hard disk drives and caused revenue loss and global industry supply shortages and elevated 
component costs for almost two years with severe reverberations for computer manufacturers. U.S. drugmaker Eli 
Lilly reported that climate change could financially hurt the firm if fiercer storms destroy its manufacturing facilities, 
as happened after Hurricane Maria in 2017. According to a New York Times report, 215 biggest global companies, 
from Silicon Valley tech firms to large European banks, are bracing for the impacts of climate change on their bottom 
lines within the next five years, and estimate at least $250 billion in losses due to the write-offs of assets and trillions 
of dollars at risk (https://www.nytimes.com/2019/06/04/climate/companies-climate-change-financial-impact.html). 
4 For example, as climate-related regulations drive up the cost of energy, high-tech and renewable-energy industries 
face price risks in the competition for rare earths and higher R&D costs for improving energy efficiency. Technology 
companies also face risks from environmental factors such as greenhouse gas emissions, waste and pollution from 
manufacturing, and disposal of old products, which increase operating costs and capital expenditures to deal with these 
issues and also put companies at a higher risk of regulatory fines and lawsuits. Shifts in consumer demand may require 
a company to modify or entirely drop a product line. 

https://www.nytimes.com/2019/06/04/climate/companies-climate-change-financial-impact.html
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high probability of failure. Previous studies show that uncertainties, such as policy uncertainty, 

uncertain returns on innovation, and cash flow volatility, make firms more cautious in innovation, 

leading to underinvestment in R&D (e.g., Minton and Schrand, 1999; Goel and Ram, 2001; Bloom, 

2007; Czarnitzki and Toole, 2011; Segal, Shaliastovich, and Yaron, 2015; Bhattacharya, Hsu, Tian, 

and Xu, 2017). Hence, high levels of uncertainty inherent in climate change and the uncertainty of 

climate-related risks may adversely affect firms’ incentives to invest in innovative projects. As 

predicted by theoretical models of investment under uncertainty (e.g., Pindyck, 1991; Dixit and 

Pindyck 1994; Bloom, Bond, and Van Reenen 2007), an increase in any risk, including the climate-

related risks, should decrease firm investment.5  

Climate-related risks could also reduce firms’ capacity to engage in innovation as innovation 

capacity largely depends on innovation infrastructure, innovation environment, and the availability 

of resources, such as stable funding and highly skilled labor. However, climate change and extreme 

weather cause fluctuations in earnings and cash flows, increase financing costs, and adversely 

affect infrastructure development, labor supply, and labor productivity (e.g., Black and Henderson, 

1999; Graff Zivin and Neidell, 2014; Heal and Park, 2016; Huang, Kerstein, and Wang, 2018; 

Jiang, Li, and Qian, 2020). These shocks would, in turn, result in higher production and R&D costs. 

The lack of adequate support for innovation could decrease firms’ innovation capacity and the 

consequent poor innovative performance. Taken together, we argue that greater vulnerability to 

climate change negatively impacts firms’ incentives and capabilities to innovate and conduct R&D. 

Accordingly, we propose our main hypothesis that firms with higher climate vulnerability have 

lower levels of R&D investment and innovation performance. 

 
5 Consistent with the prediction, Hassan, Hollander, Van Lent, and Tahoun (2019) find that increases in firm-level 
political risks, which are associated with eight political topics including environment (e.g., climate change, clean air, 
and global warming), significantly decrease firms’ investment, planned capital expenditures, and hiring. 
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To test our hypothesis, we use the climate vulnerability index from the Notre Dame Global 

Adaptation Initiative (ND-GAIN).6 It measures a country’s vulnerability to climate disruptions in 

terms of three dimensions: exposure, sensitivity, and adaptive capacity. Based on a sample of 

60,028 publicly listed firms from 88 countries over the period 1995-2019, we find that climate 

vulnerability in year t negatively affects firms’ R&D investment in year t+1 after controlling for 

known determinants of R&D, firm fixed effects, and year fixed effects. In terms of economic 

magnitude, a one-standard-deviation increase in climate vulnerability leads to a 0.7 percentage 

points decrease in R&D investment, which corresponds to a 48% decrease relative to the mean of 

R&D-to-assets ratio or a 14.1% decrease relative to the standard deviation. The result reveals that 

firms located in countries with higher climate vulnerability tend to be more cautious and 

conservative in R&D investment.  

We then examine how climate vulnerability affects firm innovation performance by using 

comprehensive firm-level patent data from the United States Patent and Trademarks Office 

(USPTO). Our results show that climate vulnerability has significant negative effects on the 

number of patents a firm generates (quantity of innovation) and the number of citations these 

patents receive subsequently (quality of innovation), suggesting that climate vulnerability is 

detrimental to firm innovation performance. 

We further explore the possible channels through which climate vulnerability hinders 

corporate innovation. First, we analyze investment efficiency using the responsiveness of R&D 

investment to investment opportunities (e.g., Badertscher, Shroff, and White, 2013; Zhong, 2018) 

and find that the responsiveness decreases with climate vulnerability. The result suggests that 

climate vulnerability makes firms forgo investment opportunities (i.e., less willing to take risky 

 
6 The ND-GAIN Country Index is compiled and published by the University of Notre Dame, a time-series index for 
assessing the impact of climate change since 1995 (https://gain.nd.edu/our-work/country-index/).  

https://gain.nd.edu/our-work/country-index/
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projects) and leads to inefficient allocation of R&D investment. This result is consistent with 

previous findings that when uncertainty is high, firms become cautious and hold back on 

irreversible investment and adopt a wait-and-see strategy, thereby reducing responsiveness to 

investment opportunities (e.g., Bloom et al., 2007; Julio and Yook, 2012).  

Second, we follow the methodology of Bhattacharya Hsu, Tian, and Xu (2017) and find that 

inventors’ incentives to innovate (proxied by the number of patenting inventors) are severely 

affected by climate vulnerability. Perhaps because climate-related risks and uncertainties increase 

the costs, risks, and uncertainties of R&D, and when uncertainties are not addressed explicitly, 

decision-makers may choose for inaction despite investment being profitable (e.g., Abadie, 

Chamorro, and González-Eguino, 2013). This finding supports our interpretation that climate 

vulnerability lowers firms’ incentives to engage in R&D and innovation activities, which leads to 

underinvestment in innovation. 

Third, climate change risk is shown to lower asset valuations (e.g., Hong, Li, and Xu, 2019; 

Bansal, Kiku, and Ochoa, 2019), increase R&D costs, and cause technology and market 

uncertainty that reduces the prospect of patent commercialization. Hence, it may also impair the 

private return to R&D or the economic value of new innovations. Indeed, our result shows that 

climate vulnerability negatively affects the patent grant announcement returns and the market 

value of new patents, which indicates that climate vulnerability weakens the contribution of 

innovation to firm valuation. This finding also helps explain the reduced incentives to invest in 

R&D and innovation.  

To better understand the effect of climate vulnerability on R&D investment, we conduct 

several subsample analyses. Our result shows that this effect is more pronounced when managers 

face greater ex-ante career risks of investing in R&D when they work in firms with longer product 
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development cycles. We also find a stronger effect for the firms paying more attention to climate 

change, measured by the Google search volume index of the topic “Climate variability and change” 

in a country. This result is consistent with Sautner, van Lent, Vilkov, and Zhang (2020) who show 

that greater attention to climate change is associated with a rise in firms’ exposures to physical and 

regulatory climate shocks. Moreover, the effect exists in both developed and developing countries, 

indicating that our main result is not driven by developing countries that are likely to be vulnerable 

to climate change due to lower adaptive capacity. 

We also consider whether companies explore business opportunities arising from climate 

change. To achieve competitive advantages, some companies may choose to improve their 

resource productivity to reduce costs, shift towards renewable energy, and develop sustainable 

technologies and green products/services. We find that climate vulnerability increases the ratio of 

patents on climate change mitigation technologies (CCMTs) in new innovations. Although climate 

vulnerability reduces investment in R&D in general, it does facilitate certain firms to adopt new 

technologies or applications for mitigation or adaptation against climate change. 

In addition, we follow prior studies (e.g., Manso, 2011; Custódio, Ferreira, and Matos, 2019) 

and classify patents into exploitative (i.e., patents that refine and extend existing knowledge) and 

exploratory (i.e., patents that require new knowledge or departure from existing knowledge and 

provide uncertain and distant returns). We find that climate vulnerability is negatively (positively) 

associated with the ratio of exploratory (exploitative) patents, suggesting that firms with greater 

climate vulnerability pursue less risky innovation strategies. 

To identify the causal effect of climate change on firm innovation, we rely on climate-related 

natural disasters, including the 2003 European heatwave (especially in France), the 2004 Asian 

tsunami, the 2011 Japan’s earthquake and tsunami, and the 2011 Thailand’s flooding. Using a 
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difference-in-differences (DID) regression analysis, we find that firms in treated countries invest 

significantly less in R&D after the natural disaster. This evidence supports the causal interpretation 

of climate vulnerability on firm R&D and innovation. 

Finally, we find qualitatively similar results when we use firm-level measures of climate 

change exposure constructed by Sautner, van Lent, Vilkov, and Zhang (2020) and the Global 

Climate Risk Index developed by Germanwatch. We also find a positive relation between firm 

innovation and the Notre Dame-Global Adaptation Index (computed by subtracting the 

vulnerability score from the readiness score for each country), indicating that the adverse impacts 

of climate vulnerability can be mitigated by more adaptation actions. Our results are robust to 

alternative measures of R&D and innovation, models with different fixed effects, and subsamples 

of non-U.S. firms, firms with at least one patent application during the sample period, and the 

period of 1995-2017 for the truncation issue due to the patent application-grant lag.  

Our study contributes to the literature in several ways. First, it adds to the literature on climate 

change and its economic impacts (e.g., Dell, Jones, and Olken, 2014; Burke, Hsiang, and Miguel, 

2015; Carleton and Hsiang, 2016; Hsiang and Kopp, 2018). We complement this literature by 

showing that climate vulnerability hinders corporate innovation worldwide, pinning down a 

potential mechanism through which climate change slows economic growth. Second, our paper 

adds to the burgeoning research on climate risk and firm decisions and outcomes (e.g., Huang, 

Kerstein, and Wang, 2018; Chang et al., 2018; Li et al., 2020; Bai et al., 2020; Flammer, Toffel, 

and Viswanathan, 2020; Flammer, 2021). Our findings indicate that climate vulnerability lowers 

firms’ incentives to innovate and reduces innovation output. Third, it contributes to the studies on 

climate change and innovation (e.g., Gans, 2012; Tur-Sinai, 2018) by providing direct evidence 

that climate vulnerability affects firms’ innovation strategies and stimulates innovation in climate 
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change mitigation technologies. Lastly, we extend the innovation literature (e.g., He and Tian, 

2013; Chang et al., 2015; Flammer and Kacperczyk, 2016; Bhattacharya et al., 2017; Bena et al., 

2017) by demonstrating that climate vulnerability is an important determinant of corporate 

innovation.  

 

2. Hypothesis development 

The literature shows that there is a strong negative relation between uncertainty and firm-

level investment (e.g., Alesina and Perotti, 1996; Bloom, Bond, and Van Reenen, 2007; Julio and 

Yook, 2012; Baker, Bloom, and Davis, 2016). Moreover, if the investment is not fully reversible, 

it exacerbates the adverse effect of uncertainty on investment (e.g., Pindyck, 1991; Pindyck and 

Solimano, 1993; Dixit and Pindyck, 1994; Abel et al., 1996; Gulen and Ion, 2016). R&D 

investment is often characterized as irreversible since a large proportion of these expenditures are 

directed toward the salaries of research personnel and the purchase of project-specific equipment 

and materials that cannot be recouped if projects fail. Czarnitzki and Toole (2011) provide 

evidence that firm R&D investment falls in response to a higher level of market uncertainty as the 

degree of uncertainty about returns to innovation increases. Bhattacharya et al. (2017) find that 

policy uncertainty adversely affects firms’ innovation incentives and outcomes. Based on these 

arguments, it can be inferred that the high levels of uncertainty inherent in climate change may 

make firms less inclined to undertake irreversible investments, such as R&D. 

Climate change also creates new risks to businesses, including systematic risks across the 

entire economy and specific risks at the industry and firm levels. These risks can be direct and 

indirect and categorized as i) physical risks, i.e., risks that arise from the physical impacts of 

climate change and extremes, such as supply-chain breakdowns, business disruptions, and loss of 
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asset value; ii) transition risks, i.e., risks that stem from the transition to a low carbon economy, 

such as policy and technology changes and consumer demand shifts that disrupt business 

operations; iii) and other risks, such as financial risks (e.g., declined profitability and cash flows 

due to higher R&D costs and operating costs, increased liabilities), reputational risks, litigation 

risks, and strategic risks (as new industries emerge or old ones are transformed).7  

These climate-related risks can affect how businesses operate, impact firm profitability, and 

accentuate the financial risks associated with innovation activities.8 Hence, firms with a greater 

vulnerability to the risks and uncertainties related to climate change are likely to be more cautious 

and conservative about investing in R&D and innovation. Since climate vulnerability determines 

how severe climate change impacts might be, firms with a greater vulnerability are more exposed 

to climate hazards due to lower adaptive capacity to mitigate the potential damage. 

Moreover, increasing climate risks may reduce firms’ capabilities to innovate. First, 

innovative firms largely depend on infrastructure that facilitates innovation (e.g., Furman, Porter, 

and Stern, 2002). However, climate change and extreme weather can damage infrastructure 

directly and slow infrastructure development, both incurring higher costs of logistics in the supply 

chain. Second, as climate change has negative impacts on multi-dimensions of the workforce, 

including productivity, supply, effort, and migration (e.g., Black and Henderson, 1999; Graff Zivin 

and Neidell, 2014; Heal and Park, 2016), it may severely affect innovation process that requires 

specialized labor skills. Third, climate-related risks may impair firms’ ability to finance R&D 

internally and externally. Huang, Kerstein, and Wang (2018) show that firms in countries with 

 
7  For example, hardware and semiconductor companies carry significant environmental risks. The wastewater 
generated from the production process contains high amounts of heavy metals and toxic chemicals, requiring higher 
operating costs and capital expenditures to deal with hazardous waste. Poor management of waste disposal can lead 
to significant regulatory fines and reputational damage. 
8 Innovation activities involve high financial risks due to a large amount of capital required and the uncertainty of 
innovation outcomes. 
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higher climate risks have significantly lower and more volatile earnings and cash flows. Jiang, Li, 

and Qian (2020) find that costs of corporate loans increase with sea-level rise risk. Also, the 

uncertainty due to a lack of information and financial expertise to assess the commercial viability 

of new green technologies makes external funding more expensive and less accessible. This could 

lead to underfunding and suboptimal levels of innovation. Fourth, climate-related policies and 

regulations (e.g., carbon taxes, cap and trade regimes, increased efficiency standards, mandates for 

renewable energy) call for more radical and disruptive technologies and make R&D more 

expensive.9 Therefore, climate risks may increase the costs of R&D and lower a firm’s capacity to 

engage in innovation, which will hurt innovation investment and performance.10 

Climate-related uncertainties also worse the uncertain nature of innovation. Besides climate 

risks, the additional ambiguity about the future stringency, timing, nature, or durability of the 

climate policy framework affects the innovation activities.11 The uncertainty in the cash flows due 

to climate risks (Huang, Kerstein, and Wang, 2018) also makes it difficult to evaluate the potential 

returns on R&D projects. In addition, climate vulnerability may indicate potential weaknesses or 

negatively affect competitiveness and market valuations, reducing the private economic value of 

innovations. With no guarantee to receive a reasonable return for R&D efforts, firms have lower 

incentives to innovate. Based on models of decision-making under uncertainty, it can be rational 

to delay irreversible investments (e.g., Pindyck, 1991; Dixit and Pindyck, 1994). Thus, in the face 

of unpredictability, firms with higher climate vulnerability are likely to forgo or postpone R&D 

 
9 For example, EVA Air reported that the company should use the latest energy conservation and carbon reduction 
technology to comply with environmental and energy laws and regulations, which increase its R&D costs 
(http://www.evacsr.com/FIle/en/EVA_CSR_2017.pdf). 
10  A firm’s innovation capacity is an important determinant of innovation performance, as firms with greater 
innovation capacity are more productive in patenting and more likely to generate high‐quality patents that could yield 
higher profits. 
11 Abadie, Chamorro, and González-Eguino (2013) point out that investments to enhance energy efficiency have huge 
potential but usually are not undertaken because of the numerous uncertainties that these investments face (e.g., 
regulatory framework, energy prices, or emission permit restrictions). 

http://www.evacsr.com/FIle/en/EVA_CSR_2017.pdf
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spending, monitor, and learn for more information before undertaking irreversible investments.  

Following the above arguments, we posit that climate vulnerability reduces firms’ incentives 

and capabilities to innovate and hinders innovation performance, which leads to the following 

testable hypothesis: 

Hypothesis: firms with higher climate vulnerability have lower levels of R&D investment and 

innovation performance. 

 

3. Data and summary statistics 

3.1. Data and sample construction  

We obtain the climate vulnerability index from the Notre Dame Global Adaptation Initiative 

(ND-GAIN). It is available for 182 countries from 1995 to the present and constructed based on 

36 indicators.12 This index measures a country’s exposure, sensitivity, and capacity to adapt to the 

negative effects of climate change, thereby indicating a country’s current vulnerability to climate 

disruptions. Specifically, the exposure captures the extent to which human society and its 

supporting sectors are stressed by the future changing climate conditions. The sensitivity measures 

the degree to which they are affected by climate hazards. The adaptive capacity reflects the ability 

to adjust to reduce potential damage and respond to the negative consequences of climate change. 

According to ND-GAIN, the index and underlying data are widely used by corporations, NGOs, 

governments, and development decision-makers to make informed strategic and operational 

decisions regarding capital projects, supply chains, policy changes, and community engagements. 

 
12 The construction of the index is based on published peer-reviewed material, the IPCC Review process, and feedback 
from corporate stakeholders, practitioners, and development users. Note that GDP per capita or any of its closely 
related measures is explicitly excluded from the ND-GAIN index. Because GDP per capita is commonly used in 
indices relating to development and poverty (e.g., Human Development Index), including it in ND-GAIN would 
doubly penalize many developing countries. 
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To gauge firms’ innovation activities, we extract R&D expenses and financial information 

from Compustat North America and Global Fundamentals annual databases. We also use global 

firm-level patent data from the UVA Darden Global Corporate Patent Dataset and the extended 

patent dataset of Kogan, Papanikolaou, Seru, and Stoffman (2017).13 The Global Corporate Patent 

Dataset is based on Bena, Ferreira, Matos, and Pires (2017) and includes patents granted by the 

USPTO to publicly listed firms worldwide, covered by Compustat North America or Compustat 

Global databases. Kogan et al. (2017) focus on USPTO granted patents to U.S. listed firms, 

including those with headquarters located in other countries. The combination of the two datasets 

provides comprehensive data on patenting by international firms. 

Bena et al. (2017) argue that using USPTO patents to measure innovation output in the 

international setting has several advantages. First, it avoids the difficulty to aggregate patent 

statistics across different patent offices and over time, as patent regulations and patent office 

practices across countries may not be comparable. Second, it alleviates the concern that there exists 

excessive heterogeneity in the quality of patents. For non-U.S. firms, the patents filed to the 

USPTO arguably reflect more important innovations, making the filers more willing to pay the 

costs of securing a patent in the U.S. In fact, USPTO has granted more patents to non-U.S. firms 

than U.S. firms in recent years. Last, using USPTO patents does not necessarily underestimate 

innovation output because the dataset contains predominantly large firms that commonly protect 

their innovations by filing patents at the USPTO and the European and Japanese Patent Offices 

(EPO and JPO) simultaneously, irrespective of domicile. Therefore, by using USPTO patents, we 

ensure the consistency and comparability of the quality, economic value, application procedure, 

 
13 The Global Corporate Patent Dataset is developed by the Batten Institute for Entrepreneurship and Innovation at 
the University of Virginia Darden School of Business and can be downloaded from https://patents.darden.virginia.edu/. 
KPSS (2017) patent data can be accessed through https://github.com/KPSS2017/Technological-Innovation-Resource-
Allocation-and-Growth-Extended-Data. 

https://patents.darden.virginia.edu/
https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data
https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data
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and legal protection of patent across different economies (e.g., Jaffe and Trajtenberg, 2002; Lerner, 

2009; Bhattacharya et al., 2017). 

Our initial sample consists of a panel of publicly listed firms drawn from the Compustat North 

America and Compustat Global databases. After merging with the climate vulnerability index data 

and patent data, the final sample consists of 743,870 firm-year observations for 60,028 unique 

firms from 88 countries during 1995-2019. 

 

3.2. Variable measurement 

The key explanatory variable of interest Vulnerability is the climate vulnerability index of 

country j in year t, which captures a country’s current vulnerability to climate disruptions. Our 

main dependent variable is the R&D investment of firm i in country j in year t+1 (R&Di,j,t+1), 

defined as R&D expenses scaled by total assets in year t+1, which measures a firm’s innovation 

input. We follow the innovation literature and set the missing R&D expenses to zero. We also 

construct two proxies for innovation output. The first one is the number of successful patent 

applications, often known as “patent count,” which is widely used to measure the quantity of 

innovation (e.g., Kamien and Schwartz, 1975; Griliches, 1990). The second one is the number of 

patent citations, which accounts for the quality of innovation, as citations are more reflective of a 

patent’s technological and economic significance or scientific value (Trajtenberg, 1990; Harhoff, 

Narin, Scherer, and Vopel, 1999; Hall, Jaffe, and Trajtenberg, 2005; Aghion, Van Reenen, and 

Zingales, 2013; Kogan et al., 2017).  

We count patents as of the filing date, which is the time that is closest to when the innovation 

was created. Following the innovation literature (e.g., Atanassov, 2013; Cornaggia, Mao, Tian, 

and Wolfe, 2015; Bena et al., 2017), we set the number of patents to zero for firm-years with no 
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patent information available. As the distributions of patents and citations are highly skewed, we 

use the natural logarithm of one plus the number of successful patent applications or the number 

of citations received by these patents of firm i in country j in year t+1 (LnPatentsi,j,t+1 and 

LnCitationsi,j,t+1) in our regressions. Because there is a significant time lag (about two years on 

average) between a patent’s application year and its grant year, we also calculate LnPatentsi,j,t+1, 

t+3 and LnCitationsi,j,t+1, t+3 over the three years from t+1 to t+3 to address the truncation problem. 

In robustness checks, we also use a shorter sample period of 1995-2017 and find consistent results. 

 

3.3. Summary statistics 

Panel A of Table 1 shows that the average climate vulnerability index ranges from 0.265 

(Norway) to 0.611 (Sudan). A higher value of the vulnerability index indicates the more severe 

impacts of climate change. The U.S. firms have the highest total amount of R&D expenditures, 

followed by Japan and Germany. Our sample firms were granted a total of 2,446,032 patents by 

the USPTO over the period 1996-2019. The distribution of patents across countries illustrates the 

global nature of innovation. More than half of the patents are granted to non-U.S. firms. The U.S. 

firms have the highest total number of USPTO patents, followed by Japan and South Korea.14  

Panel B of Table 1 reports that descriptive statistics across all firm-year observations in our 

sample. To mitigate the influence of outliers, we winsorize firm-level continuous variables at the 

1st and 99th percentiles. Our sample firms have an average R&D investment (R&Dt+1) of 0.015 

with a standard deviation of 0.051 and an average climate vulnerability index (Vulnerability) of 

0.380 with a standard deviation of 0.066. The mean of patents and citations (LnPatentst+1 and 

LnCitationst+1) are 0.131 and 0.187, respectively. The average firm size (Size) is 5.017. In Internet 

 
14 In the robustness check, we exclude U.S. firms and find qualitatively similar results. 



 

15 
 

Appendix Table IA1, we present the average cross-country time-series correlations of our main 

variables. 

[TABLE 1 ABOUT HERE] 

 

3.4. Empirical test specification 

To test the effects of climate vulnerability on firms’ R&D investment and innovation 

performance, we estimate the following ordinary least squares (OLS) regressions: 

 

R&Di,j,t+1 = β0 + β1 Vulnerabilityj,t + δ′X + Firm FE + Year FE + εi,j,t+1, (1) 

 

LnPatentsi,j,t+1, LnCitationsi,j,t+1, LnPatentsi,j,t+1,t+3, or LnCitationsi,j,t+1,t+3= β0 + β1 Vulnerabilityj,t 

+ δ′X + Firm FE + Year FE + εi,j,t+1, (2) 

 

where subscript i indexes firms, j indexes countries, and t indexes years. The dependent variables 

are defined in Section 3.2. Vulnerability is the climate vulnerability of country j in year t.  

The vector X includes a set of firm-specific control variables as well as country-level factors 

measured in year t, including firm size, market-to-book ratio, tangibility, cash holdings, free cash 

flow, leverage ratio, return on assets, GDP per capita, GDP growth, political stability, policy 

uncertainty, property rights, the development of credit market and equity market, and Human 

Development Index, as well as capital expenditures and lagged R&D intensity for Equation (2) 

(detailed variable definitions are provided in the Appendix).  

We include firm and year fixed effects in all regressions. Firm fixed effects account for 

unobserved time-invariant firm heterogeneity, such as corporate innovation culture or the risk of 
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sea level rise. The inclusion of year fixed effects controls for variation over time in innovation 

activities (or a potential time trend effect) and any year-specific factors that may confound our 

findings. As time-invariant measures have no explanatory power in a firm fixed effects framework 

(e.g., McLean, Zhang, and Zhao, 2012), industry and country fixed effects are irrelevant in a 

framework with firm fixed effects and therefore are not included in our regressions. In the 

robustness checks, we use alternative sets of fixed effects such as country, industry, and year fixed 

effects, or country-industry and industry-year joint fixed effects, and obtain qualitatively similar 

results.  

 

4. Empirical results 

4.1. Baseline results 

Table 2 reports the estimation results of Equation (1). We show that climate vulnerability 

(Vulnerability) in year t is significantly and negatively associated with firms’ R&D investment in 

year t+1. In terms of economic magnitude, the coefficient on Vulnerability of −0.109 in column 4 

suggests that a one-standard-deviation increase in climate vulnerability is associated with a 0.72 

percentage points decrease (−0.066×0.109) in R&D investment, which corresponds to a 48% 

decrease relative to the mean of R&D-to-assets ratio, or a 14.1% decrease relative to the standard 

deviation. The result provides strong support for our hypothesis. It is also consistent with prior 

findings that in the face of greater uncertainty and risk, firms are more cautious and reluctant to 

invest in R&D and innovation (e.g., Bloom, 2007; Czarnitzki and Toole, 2011; Bhattacharya, Hsu, 

Tian, and Xu, 2017). 

[TABLE 2 ABOUT HERE] 

In Table 3, we examine how climate vulnerability affects technological innovation success, 
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as measured by patent counts and citation counts. The dependent variables are LnPatentsi,j,t+1, 

LnPatentsi,j,t+1,t+3, LnCitationsi,j,t+1, and LnCitationsi,j,t+1,t+3 from columns 1 to 4, respectively. We 

find a significant negative effect of climate vulnerability on firm innovation output. For example, 

in column 1, the coefficient on Vulnerability is −5.511 and statistically significant at the 1% level. 

This result suggests that a one-standard-deviation increase in climate vulnerability leads to a 

decrease of nearly 36% (−0.066×5.511) in the number of patents. The result indicates that climate 

vulnerability adversely affects firm innovation performance. Collectively, our evidence suggests 

that climate vulnerability hinders corporate innovation activities. 

[TABLE 3 ABOUT HERE] 

 

4.2. Potential channels  

In this section, we discuss the potential economic channels through which climate 

vulnerability impedes corporate innovation, including investment efficiency, incentives to 

innovate, and the private economic value of new innovations. 

 

4.2.1. Sensitivity of R&D to investment opportunities 

The conventional models of investment under uncertainty predict that when investment 

decisions are irreversible or just even partially irreversible, firms become more cautious and hold 

back on investment in the face of uncertainty (e.g., Pindyck, 1991; Dixit and Pindyck, 1994; 

Czarnitzki and Toole, 2011; Gulen and Ion, 2016). As a result, higher uncertainty leads to a 

reduction in firms’ responsiveness to the investment opportunity set (e.g., Bloom et al., 2007; Julio 

and Yook, 2012). In line with this, Wellman (2017) shows that uncertainty causes managers to 

forgo investment, potentially shifting opportunities toward firms that can better mitigate the effects 
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of uncertainty. Based on these studies, we conjecture that climate-related uncertainties may affect 

the optimal allocation of R&D capital since R&D investment has a high degree of irreversibility 

and a long time horizon with uncertain payoffs. 

Following prior studies (e.g., Badertscher, Shroff, and White, 2013; Zhong, 2018), we use 

the responsiveness of R&D investment to investment opportunities (Tobin’s Q) as a proxy for 

investment efficiency and examine how it varies with climate vulnerability as follows: 

 

R&Di,j,t+1 = β0 + β1 Tobin’s Qi,j,t × Vulnerabilityj,t + β2 Tobin’s Qi,j,t + β3 Vulnerabilityj,t  

+ δ′X + Firm FE + Year FE + εi,j,t+1.                                                                       (3) 

 

Tobin’s Q is calculated as (total assets + market value of equity – book value of equity – deferred 

taxes) divided by total assets in year t. It captures the market’s information about investment 

opportunities (Hubbard, 1998; Stein, 2003). In Table 4, the coefficients on Tobin’s Q 

×Vulnerability are significantly negative, and the coefficients on Tobin’s Q are significantly 

positive. The result is consistent with our conjecture that climate vulnerability substantially 

decreases the responsiveness of R&D investment to the investment opportunity set. Climate 

vulnerability causes firms to forgo some investment opportunities (i.e., to be less willing to take 

great risks), which results in lower investment efficiency.  

[TABLE 4 ABOUT HERE] 

 

4.2.2. Incentives to innovate 

We next investigate the extent to which climate vulnerability impacts firms’ incentives to 

innovate. As discussed in Section 2, climate-related risks and uncertainties (e.g., physical risks, 
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transition risks, financial risks, lack of certainty about climate policies, rising future costs, 

unexpected costs arising from future policy shifts) can increase the costs, risks, and uncertainties 

of R&D and innovation. We thus expect a negative relation between climate vulnerability and 

firms’ incentives to innovate. 

Bhattacharya et al. (2017) use the numbers of patent inventors that have filed at least one 

patent in a sample country-industry-year as a proxy for incentives to innovate. The rationale is that 

given the stable population size across years, more inventors filing patent applications reflect a 

stronger incentive to innovate. Following their methodology, we estimate the following regression: 

 

LnInventorsk,j,t+1 = β0 + β1 Vulnerabilityj,t + δ′X + Country-industry FE + Year FE + εk,j,t+1, (4)  

 

where the dependent variable LnInventorsk,j,t+1 is the natural logarithm of one plus the number of 

patent assignees who have ever filed at least one patent of industry k of country j in year t+1. 

Vulnerability is country j’s vulnerability to climate disruptions in year t. The vector X includes a 

set of country-level factors measured in year t as well as the lagged number of inventors 

(LnInventorsk,j,t). We include country-industry fixed effects to capture any factors associated with 

specific industries in certain countries as well as year fixed effects.  

In Table 5, we find that the inventors’ incentive to innovate is reduced by climate vulnerability. 

As shown in all columns, the coefficients of Vulnerability are negative and significant, indicating 

that innovation incentives, proxied by the number of inventors filing patents, decline significantly 

with climate vulnerability. This finding supports our interpretation that climate vulnerability 

lowers the incentives to engage in innovation activities, contributing to the lower R&D investment 

and fewer innovations.  
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 [TABLE 5 ABOUT HERE] 

 

4.2.3. Patent grant announcement returns and patent value 

Recent studies suggest that climate change risks have significant negative impacts on asset 

valuations (e.g., Hong, Li, and Xu, 2019; Baldauf, Garlappi, and Yannelis, 2020; Hong, Karolyi, 

and Scheinkman, 2020). In particular, Bansal, Kiku, and Ochoa (2019) find that a one-standard-

deviation increase in the temperature trend leads to about a 3% decline in equity valuations. Hence, 

equity prices reflect investors’ concern about the impact of rising temperature on long-run 

economic growth and risk. Since the market value of patents and R&D are positively associated 

with firm valuation (e.g., Bloom and Van Reenen, 2002; Hall et al., 2005), the economic value of 

new innovations may also be affected by climate impacts. Besides, climate-related risks can 

increase R&D costs, reduce firms’ innovation capabilities, and cause economic, policy, technology, 

market, consumer demand, and social changes. These shocks may lower the private return to R&D 

spending, impair production of high-quality patents, and reduce the prospect of successful patent 

commercialization on which patent value depends.  

Similar to Kogan et al. (2017) and Custódio et al. (2019), we run an event study using a global 

sample of patent grant announcements and estimate cumulative abnormal returns (CAR) over the 

three-day event window (0, +2) around the patent grant announcement date. We divide the sample 

by the yearly median of the climate vulnerability index, yielding a high vulnerability group of 

1,211,738 patents and a low vulnerability group of 1,647,912 patents. We then calculate the mean 

and median CARs for each group. Both raw returns and market-adjusted returns are calculated 

using stock returns data from CRSP and Compustat Global-Security Daily databases. For market-

adjusted returns, the raw returns are adjusted by the CRSP value-weighted market returns or the 
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country total return indices from World Indices by WRDS database. 

[TABLE 6 ABOUT HERE] 

Panel A of Table 6 shows that the average raw returns and market-adjusted returns of new 

patents filed by firms with high climate vulnerability are 18.8 and 2.7 basis points per patent, 

respectively. The returns are significantly lower than those of the low climate vulnerability group 

(22.7 and 6.2 basis points per patent). Using median returns yields similar results. This finding 

indicates that climate vulnerability weakens the contribution of innovation to firm valuation. 

Further, we follow prior research (e.g., Kogan et al., 2017; Brav, Jiang, Ma, and Tian, 2018) 

and measure the private economic value of new innovations using the market value of a new patent 

implied by the market responses to the patent approval. Specifically, a patent’s market value is 

calculated as the firm’s stock return in excess of the market over the three-day window (0, +2) 

around the date of patent approval, multiplied by the firm’s market capitalization on the day prior 

to the announcement. We then regress the market value of new patents (in ten million U.S. dollars) 

on climate vulnerability and find significant negative coefficients on Vulnerability, as reported in 

Panel B of Table 6. The result indicates that climate vulnerability reduces the private economic 

value of new patents. These findings provide supportive evidence for the lower incentives to 

innovate for firms with greater vulnerability to climate change.  

In sum, this section shows that climate vulnerability impedes corporate innovation activities 

by reducing investment efficiency (the responsiveness of R&D investment to investment 

opportunities), lowering incentives to innovate, and decreasing private returns to innovation. 

Consequently, firms that are more vulnerable to climate change tend to have lower R&D 

investment and innovation output. 
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5. Subsample tests, climate-related natural disasters, and robustness checks 

In this section, we first explore the relation between climate vulnerability and R&D 

investment using subsamples of long/short product development cycles, high/low attention to 

climate change, and developing/developed countries. We then address possible endogeneity 

concerns by conducting a difference-in-differences (DID) analysis based on climate-related natural 

disasters. Finally, we perform various robustness checks. 

 

5.1. Subsample tests 

Managers are under pressure to deliver short-term results at the expense of long-term 

sustainable performance such that they could meet short-term earnings targets. The 2019 Deloitte 

European CFO Survey of 1,168 CFOs reveals that most companies’ climate responses focus 

primarily on measures that have a short-term cost-saving effect, and few companies have a 

governance and steering mechanism in place to develop and implement comprehensive climate 

strategies. A long product development cycle may increase managers’ career risk because 

managers typically have limited career horizons, while the returns to R&D investment take time 

to realize. Hence, firms that are highly vulnerable to the physical or economic transition risks 

associated with climate change may be less inclined to invest in R&D, especially for those with a 

long product development cycle.  

Following Zhang (2018), we measure the product development cycle as the industry-level 

R&D amortizable life because products with longer development cycles generally have longer 

amortizable lives. We then divide the sample of Table 2 into high and low groups by the median 

of the product development cycle and re-estimate Equation (1) for each subsample. Consistent 

with our expectation, we find that the negative effect of climate vulnerability on R&D investment 
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is more pronounced for firms with longer product development cycles. As reported in columns 1 

and 2 of Table 7, the coefficients of Vulnerability are significantly more negative for firms with 

longer product development cycles when managers face greater ex-ante career risks of investing 

in R&D.  

[TABLE 7 ABOUT HERE] 

Choi, Gao, and Jiang (2020) show that people experiencing abnormally warm weather pay 

more attention to climate change, as measured by the monthly Google Search Volume Index (SVI) 

of the topic “global warming” in a city. Similarly, Sautner et al. (2020) find a strong positive 

association between the time-series variation in media attention to climate change and the firm-

level exposures to regulatory and physical climate shocks. Thus, we expect the negative effect of 

climate vulnerability on R&D investment to be larger among firms with more attention to climate 

change. 

We use the Google SVI of the topic “Climate variability and change” in each country as a  

measure for attention on climate change.15 Google divides each data point by the total searches of 

the geography and time range it represents to compare relative popularity. The resulting numbers 

are scaled between 0 to 100 based on a topic’s proportion to searches on all topics. We thus 

classify our sample into high and low attention groups by the median of Google SVI within each 

country. Columns 3 and 4 of Table 7 show that the negative effect of climate vulnerability on R&D 

is significantly stronger among firms with more attention to climate change. The result indicates 

that firms with more severe climate impacts (i.e., those with greater climate vulnerability) and 

greater attention to climate change tend to be more conservative in investing in R&D. 

 
15 Google provides SVI for topics and search terms. Similar to Choi, Gao, and Jiang (2020), we use topics instead of 
search terms because the former addresses misspellings and searches in different languages, as Google’s algorithms 
can group different searches that have the same meaning under a single topic. Our Google data capture the search 
activity on the topic “Climate variability and change” in each country and cover different languages. 
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In addition, we also estimate Equation (1) for developed and developing countries separately. 

The coefficient of Vulnerability is −0.087 and statistically significant at the 5% level for developed 

countries and −0.024 and statistically significant at the 1% level for developing countries. The 

results suggest that our main finding is not solely driven by developing countries that are likely to 

be more vulnerable to climate change due to their lower adaptive capacity. 

 

5.2. Innovation strategies 

Climate change also brings new business opportunities. Under the stress of transition risks 

associated with climate change, companies feel the need to improve resource allocation efficiency 

and implement sustainable manufacturing practices, such as minimizing waste, recycling materials, 

shifting towards renewable energy, reducing greenhouse gases emission, and developing 

sustainable technologies and green products/services. Motivated by economic incentives (e.g., 

carbon taxes and cap and trade regimes) and legal initiatives, research and investments in Climate 

Change Mitigation Technologies (CCMTs) have grown tremendously over the years. For example, 

European companies have invested about 250 €bn in R&D activities concerning CCMTs from 

2003 to 2014 (Pasimeni, Fiorini, and Georgakaki, 2019). Given the critical role of CCMTs, firms 

with high climate vulnerability are likely to engage in technology development for mitigating or 

adapting to climate change. 

To test this conjecture, we follow prior studies (e.g., Veefkind et al., 2012; Angelucci, 

Hurtado-Albir, and Volpe, 2018; Pasimeni et al., 2019) and classify “CCMT patents” based on 

Cooperative Patent Classification (CPC) of Y02 or Y04S.16 Specifically, Y02 covers technologies 

that control, reduce, or prevent greenhouse gas emissions and technologies that allow adaptation 

 
16 The detailed description of CPC can be found at https://www.uspto.gov/web/patents/classification/cpc/html/cpc-
Y.html#Y02. 

https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html#Y02
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html#Y02


 

25 
 

to the adverse effects of climate change. Y04S includes systems integrating technologies related 

to power network operation, communication, or information technologies (i.e., smart grids). We 

then regress the CCMT ratio, defined as the ratio of CCMT patents in the total number of patents 

filed by firm i over years t+1 to t+3, on climate vulnerability in year t. Column 1 of Table 8 shows 

that the coefficient of Vulnerability is 0.323 and statistically significant at the 5% level. The result 

indicates that climate vulnerability increases the ratio of CCMT patents in new innovations. 

Although climate vulnerability negatively impacts overall corporate innovation, firms in countries 

with high climate vulnerability indeed invest more in CCMTs that might mitigate the adversity. 

The literature (e.g., March, 1991; Manso, 2011; Custódio et al., 2019) also identifies two 

essential innovative strategies: exploitative and exploratory. The exploitative strategy refines or 

extends existing technologies. In contrast, the exploratory strategy requires new knowledge or 

departures from existing knowledge and involves the experimentation with new alternatives that 

are associated with uncertain, distant, and often negative returns. Since the exploratory strategy 

involves disruptive changes and path-breaking and is riskier, firms with high climate vulnerability 

may be more likely to engage in less risky exploitative strategies.  

Following prior studies (e.g., Custódio et al., 2019), we categorize a patent as exploitative if 

at least 60% of its citations are based on the firm’s existing knowledge and as exploratory if at 

least 60% of its citations are based on new knowledge (i.e., patents not in the firm’s existing 

knowledge set).17 We find that climate vulnerability has a negative effect on the Exploratory ratio 

but a positive effect on the Exploitative ratio, as shown in columns 2 and 3 in Table 8. The result 

suggests that firms with greater climate vulnerability tend to pursue more conservative innovation 

 
17 Alternatively, similar to Brav, Jiang, Ma, and Tian (2018), we define a patent as exploitative if at least 80% of its 
citations are based on the firm’s existing knowledge and as exploratory if at least 80% of its citations are based on 
new knowledge. Untabulated results are qualitatively similar. 
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strategies and engage more in exploitative than exploratory innovations.  

[TABLE 8 ABOUT HERE] 

In addition, we show that climate vulnerability negatively affects the absolute number of 

patents associated with different innovation strategies, including non-CCMT patents, CCMT 

patents, exploratory patents, and exploitative patents. As reported in Table IA2, the coefficients 

on Vulnerability are significantly negative in all the columns. For non-CCMT patents and 

exploratory patents, the negative effect of climate vulnerability is much stronger. These results 

collectively show that climate vulnerability nudges firms to pursue innovation in climate change 

mitigation/adaptation technologies, which leads to an increase in the ratio of CCMT patents in new 

innovations. However, the absolute number of CCMT patents still decreases. This result is 

consistent with Gans (2012) that climate change policy may stimulate the relative demand for 

innovations that improve energy efficiency. But it also diminishes innovation incentives overall as 

it increases the overall scarcity of factors in the economy (at least in the short run) and possibly 

because investments under uncertain climate policy tend to be much riskier as well (e.g., Abadie, 

Chamorro, and González-Eguino, 2013). 

 

5.3. Difference-in-differences regressions based on natural disasters 

Climate change and extreme weather events are most likely to be exogenous to a firm’s 

innovation activities.18 Nevertheless, we use a difference-in-differences (DID) regression analysis 

based on climate-related natural disasters to better identify the causal effect of climate change on 

R&D investment. The events we focus on include the 2003 heatwave in France, the 2003 European 

 
18 However, there is a possibility that when firms pursue more innovation for mitigating or adapting to climate change, 
climate vulnerability may reduce. Abdelzaher, Martynov, and Zaher (2020) examine the impact of a country’s degree 
of innovation on its vulnerability to climate change and find that a country’s R&D expenditures as a percentage of 
GDP decrease a country’s vulnerability to climate change based on country-level data over 1998-2013. 
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heatwave, the 2004 Asian tsunami, the 2011 Japan’s earthquake and tsunami, and the 2011 

Thailand’s flooding, which caused severe casualties and economic losses. The most affected 

countries by the 2003 European heatwave include France, Germany, Spain, Italy, UK, Netherlands, 

Portugal, Belgium, Switzerland, Austria, Finland, Denmark, and Ireland. The six most-affected 

countries in the 2004 Asian tsunami in our sample are Indonesia, Sri Lanka, India, Thailand, 

Malaysia, and Tanzania. 

For each event, we estimate the following DID regression using an event window of (t−3, 

t+3) around the natural disaster year: 

 

 R&Di,j,t = β0 + β1 Treatj × Postj,t + δ′X + Firm FE + Year FE + εi,j,t,  (5) 

 

where the dependent variable R&Di,j,t is the R&D investment of firm i in country j in year t. Treatj 

is a dummy equal to one for the treated country j and zero otherwise. Postj,t is a dummy that equals 

one for post-disaster years and zero otherwise. The vector X includes the same control variables as 

in Equation (1). We include firm and year fixed effects. Treat and Post dummies are omitted due 

to collinearity with the fixed effects.  

In Table 9, columns 1, 3, 5, 7, and 9 use all other countries as the control groups, while 

columns 2, 4, 6, 8, and 10 only use the treated country (or countries). The coefficients on Treat × 

Post are significantly negative in all the columns, suggesting that firms in treated countries invest 

significantly less in R&D after the natural disaster events. This evidence supports our causal 

interpretation that climate-related risks adversely impact firms’ R&D investment. 

 [TABLE 9 ABOUT HERE] 
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5.4. Robustness checks 

We perform a battery of robustness tests for our main findings. To begin with, we use the 

firm-level measures of climate change exposure constructed by Sautner, van Lent, Vilkov, and 

Zhang (2020). They adopt a machine learning keyword discovery algorithm to produce a set of 

climate change bigrams and identify firm-level climate change exposure from transcripts of 

quarterly earnings conference calls of more than 10,000 firms from 34 countries over 2002-2019. 

The measure of climate change exposure (CCExposure) is based on the frequency of climate 

change bigrams in a given transcript, scaled by the total number of bigrams in the transcript. The 

measure of climate change risk (CCRisk) is constructed by counting the relative frequency of 

climate change bigrams mentioned in the same sentence with the words “risk” or “uncertainty” (or 

their synonyms). In Table 10, we find significant negative effects of CCExposure and CCRisk on 

R&D investment and innovation output, consistent with our hypothesis.19 

[TABLE 10 ABOUT HERE] 

We further use the Climate Risk Index (CRI) annually published by the Germanwatch to 

measure climate risk in a country. It analyses the quantified impacts of extreme weather events by 

country both in terms of economic losses and fatalities. It also indicates the level of exposure and 

vulnerability to extreme events in the future. The CRI has been published annually since 2006 and 

contains two sets of scores: annual and long-term. We adopt annual scores for the years 2004-2018 

and long-term scores for years before 2004. Since lower CRI scores indicate higher climate risk, 

we multiply the index by −1 so that higher values of the index now represent greater climate risk. 

 
19 Sautner, van Lent, Vilkov, and Zhang (2020) find that between 70.4 and 96.8% of the variation in their climate 
exposure measures plays out at the firm level and half of this firm-level variation is persistent. They mention that 
exposure to physical shocks is highly dependent on firm-specifics (e.g., the location of a firm’s headquarters, 
production sites, the supply chain specifics, and its specific insurance policies). Following their paper, we use country, 
industry, and year fixed effects in the regressions for Table 10.  
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Panel A of Internet Appendix Table IA3 shows that firm-level R&D investment and innovation 

performance are significantly negatively affected by country-level CRI.  

Panel B of Table IA3 reports the results using the Notre Dame-Global Adaptation Index. This 

index assesses both a country’s current vulnerability to climate disruptions and also a country’s 

readiness to leverage private and public sector investment for adaptive actions. It is computed by 

subtracting the vulnerability score from the readiness score for each country and scaled to yield a 

value between 0 and 100 (i.e., ND-GAIN score = (readiness score − vulnerability score +1) × 50). 

We find significant positive associations between the ND-GAIN score and firm-level R&D 

investment and innovation performance, suggesting that climate adaptation readiness (e.g., 

economic, governance, and social readiness) fosters firm innovation activities and mitigates the 

negative effect of climate vulnerability.  

In Panel A of Table IA4, we re-estimate Equations (1) and (2) using alternative measures of 

firm innovation activities: (i) R&Di,j,t+2 and R&Di,j,t+3, calculated as the R&D expenses scaled by 

total assets of firm i in country j in year t+2 or t+3; (ii) R&D growth of firm i in country j in year 

t+1 (R&D growtht+1), defined as ln(1 + R&Di,j,t+1) – ln(1 + R&Di,j,t); (iii) the natural logarithm of 

one plus the number of patent applications or citations received by patents filed by firm i in country 

j in year t+2 or t+3; (iv) innovation growth of firm i in country j in year t+1 (Patent growtht+1), 

defined as ln(1 + Patenti,j,t+1) – ln(1 + Patenti,j,t). Panel B uses alternative fixed effects, including 

country, industry, year, country-industry, or industry-year fixed effects. All the results remain 

consistent. Finally, as reported in Table IA5, our main results hold for the subsamples of non-U.S. 

firms, firms with at least one patent application during our sample period, and the period of 1995-

2017 for addressing the truncation issue due to the patent application-grant lag.   
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6. Conclusion 

We provide novel evidence that the vulnerability to climate change adversely affects firms’ 

R&D investment and innovation performance across the world based on a sample of 60,028 firms 

from 88 countries during the period 1995-2019. We show that this effect operates through (i) the 

decreased responsiveness of R&D investment to investment opportunities, which leads to 

inefficient allocation of R&D capital and lower investment efficiency; (ii) the reduced incentives 

to innovate; and (iii) the lower private economic value of new innovations. Through these channels, 

climate vulnerability hinders corporate innovation activities.  

Our subsample results show that the negative effect of climate vulnerability on R&D 

investment is more pronounced for firms with longer product development cycles and more 

attention to climate change. The effect exists not only in developing countries but also in developed 

ones. Moreover, we find that climate vulnerability increases the ratio of patents on climate change 

mitigation technologies in new innovations and triggers more exploitative innovations. We provide 

the causal inference by using a DiD analysis based on climate-related natural disasters. Our 

findings are also corroborated by alternative measures of climate change exposure at both firm and 

country levels.  

Overall, our study offers a new perspective on the mechanisms through which climate change 

adversely affects economic growth. Our findings provide practical implications for companies, 

policymakers, and regulators. Building capacities to cope with climate change uncertainty is a key 

action for adaptation. It is also essential to increase in-house capacity and expertise in companies 

that enable them to assess climate risks and implement adaptation actions more efficiently. 

Governments are suggested to reduce uncertainties associated with climate policies and regulations 

where possible and provide more support (e.g., subsidy, long-term climate policy framework) to 
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increase firms’ incentives and capabilities to innovate.  
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Appendix. Variable Definitions 
 

Variable Definition  
R&Dt+1 R&D expense divided by the total assets in year t+1, xrd/at, xrd is set to 0 if missing. Source: Compustat 

global and North America 
LnPatentst+1 The natural logarithm of one plus the number of successful patent applications filed by firm i in country 

j in year t+1 (and granted by the end of 2019). 
LnCitationst+1 The natural logarithm of one plus the total number of forward citations received by patents filed by firm 

i in country j in year t+1.  
Vulnerability A country’s vulnerability to climate disruptions in year t. The climate vulnerability index is a sub-index 

of the Notre Dame-Global Adaptation Index (ND-GAIN). The ND-GAIN index is compiled and 
published by the University of Notre Dame, a time-series index for assessing the impact of climate 
change since 1995 (https://gain.nd.edu/our-work/country-index/). 

Size The natural logarithm of the book value of total assets (in million U.S dollars), at.  
M/B Market value of equity divided by book value of equity, mv/ ceq. mv is calculated as stock price times 

share outstanding at the end of the fiscal year (csho×prcc_f). 
Tobin’s Q Tobin’s Q is calculated as (Book value of total assets + market value of equity – book value of equity – 

deferred taxes) divided by the book value of total assets, similar to Gompers, Ishii, and Metrick (2003). 
Compustat: (at+ csho×prcc_f − ceq – txdb)/at.  

Tangibility The ratio of total tangible assets (i.e., property, plant and equipment) to book value of total assets, 
ppent/at.  

Cash Cash holdings, calculated as cash and short-term investments divided by total assets, che/at.  
Free cash flow Cash flow to total assets, (oibdp−xint−txt−dvc)/at.  
Leverage Total debt divided by total assets, (dltt+dlc)/at.  
ROA Return on assets, oibdp/at.  
Capex Capital expenditures to total assets, capx/at. 
LnGDPpcap The natural logarithm of GDP per capita (current US$). Source: The World Bank DataBank 

(https://data.worldbank.org/indicator/NY.GDP.PCAP.CD) 
GDP growth GDP growth (annual %). It is divided by 100 in regressions. Source: The World Bank DataBank 

(https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG).  
Political stability The index of political stability and absence of violence (http://info.worldbank.org/governance/wgi/). 
Uncertainty The World Uncertainty Index (WUI) uses frequency counts of “uncertainty” (and its variants) in the 

quarterly Economist Intelligence Unit (EIU) country reports. The EIU reports discuss major political 
and economic developments in each country, along with analysis and forecasts of political, policy and 
economic conditions. To make the WUI comparable across countries, the raw counts are scaled by the 
total number of words in each report (https://www.policyuncertainty.com/wui_quarterly.html). 

Property rights A rating of property rights in each country, which provides a quantifiable measure of the degree to which 
a country’s laws protect private property rights and the extent to which those laws are respected. It is 
divided by 100 in regressions. Source: The Index of Economic Freedom from Heritage Foundation 
(https://www.heritage.org/index/explore).  

Credit market Domestic credit to private sector (% of GDP). It is divided by 100 in regressions. Source: The World 
Bank DataBank (https://data.worldbank.org/indicator/FS.AST.PRVT.GD.ZS).  

Equity market Market capitalization of listed domestic companies (% of GDP). It is divided by 100 in regressions. 
Source: The World Bank DataBank (https://data.worldbank.org/indicator/CM.MKT.LCAP.GD.ZS). 

HDI Human development index. Source: United Nations Development Programme Human Development 
Data Center (http://hdr.undp.org/en/data, http://hdr.undp.org/en/content/human-development-index-
hdi). 

CCMT ratio A patent is classified as climate change mitigation technologies (CCMTs) if its Cooperative Patent 
Classification (CPC) is Y02 or Y04S. CCMT ratio is defined as the number of CCMT patents filed by 
firm i in country j over years t+1 to t+3 divided by the total number of patents filed by firm i over years 
t+1 to t+3. 

Product 
development 
cycle 

It is measured as the industry-level R&D amortizable life, similar to Zhong (2018). Source: Aswath 
Damodaran’s website: http://people.stern.nyu.edu/adamodar/New_Home_Page/spreadsh.htm 
 

https://gain.nd.edu/our-work/country-index/
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
http://info.worldbank.org/governance/wgi/
https://www.policyuncertainty.com/wui_quarterly.html
https://www.heritage.org/index/explore
https://data.worldbank.org/indicator/FS.AST.PRVT.GD.ZS
https://data.worldbank.org/indicator/CM.MKT.LCAP.GD.ZS
http://hdr.undp.org/en/data
http://hdr.undp.org/en/content/human-development-index-hdi
http://hdr.undp.org/en/content/human-development-index-hdi
http://people.stern.nyu.edu/adamodar/New_Home_Page/spreadsh.htm
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Exploitative 
Ratio 

The number of exploitative patents filed by firm i in country j over years t+1 to t+3 divided by the 
number of all patents filed by firm i in country j over years t+1 to t+3. A patent is categorized as 
exploitative if at least 60% of its citations are based on the firm’s existing knowledge. 

Exploratory 
Ratio 

The number of exploratory patents filed by firm i in country j over years t+1 to t+3 divided by the number 
of all patents filed by firm i in country j over years t+1 to t+3. A patent is categorized as exploratory if 
at least 60% of its citations are based on new knowledge (i.e., patents not in the firm’s existing 
knowledge).  
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Table 1 
Summary statistics 

 
The sample consists of 743,870 firm-year observations for 60,028 unique firms from 88 countries during 1995-2019. Panel A 
shows the statistics on climate vulnerability, research and development (R&D) expenditures, number of patents filed with the 
USPTO, and the number of publicly listed firms by country. Mean Vulnerability is the average of a country’s vulnerability to 
climate disruptions in year t. Total R&D (in billion U.S. dollars) is the total R&D expenditures in year t+1 across all firms during 
1995-2019. Mean R&D/Assets is the average of a firm’s R&D expense scaled by total assets in year t+1. Total patents (Mean 
patents) is the total (average) number of successful patent applications filed by all firms in year t+1 (and granted by 2019) during 
the sample period. Panel B reports descriptive statistics at the firm-level based on all firm-year observations. All firm-level 
continuous variables are winsorized at the 1st and 99th percentiles. All variables are defined in the Appendix.  
 
Panel A: Descriptive statistics by country 

Country 
Mean 

Vulnerability 
Total R&D 

($billion) 
Mean 

R&D/Assets 
Total 

patents 
Mean 

patents 
Number of 

firms 
Argentina 0.405  1.327  0.001  15 0.009  109 
Australia 0.338  43.288  0.035  1,059 0.029  3,020 
Austria 0.296  20.754  0.012  742 0.328  183 
Bahamas 0.464  0.096  0.833  21 0.344  5 
Bangladesh 0.567  0.056  0.000  0 0.000  309 
Belgium 0.364  53.748  0.023  2,006 0.602  261 
Botswana 0.480  0.000  0.000  0 0.000  26 
Brazil 0.410  39.815  0.001  505 0.063  541 
Bulgaria 0.365  0.025  0.000  0 0.000  100 
Canada 0.315  85.754  0.046  18,530 4.453  534 
Chile 0.357  0.910  0.000  1 0.000  260 
China 0.413  693.801  0.010  8,267 0.131  4,987 
Colombia 0.423  0.179  0.000  5 0.005  71 
Costa Rica 0.385  0.015  0.129  0 0.000  1 
Cote d'Ivoire 0.512  0.000  0.000  0 0.000  28 
Croatia 0.395  82.584  0.005  0 0.000  102 
Cyprus 0.356  0.175  0.000  0 0.000  109 
Czech Republic 0.308  0.984  0.001  0 0.000  54 
Denmark 0.331  76.036  0.031  4,006 0.949  341 
Egypt 0.447  0.048  0.000  0 0.000  220 
Estonia 0.364  0.083  0.001  0 0.000  26 
Finland 0.298  142.085  0.033  19,168 5.821  241 
France 0.309  623.611  0.023  34,657 2.072  1,415 
Germany 0.301  1,163.959  0.020  93,131 5.021  1,487 
Greece 0.349  1.940  0.003  9 0.002  348 
Hungary 0.368  2.978  0.009  0 0.000  58 
Iceland 0.338  1.683  0.010  82 0.208  36 
India 0.520  81.683  0.004  15,070 0.204  4,404 
Indonesia 0.463  0.707  0.000  10 0.001  720 
Ireland 0.330  159.188  0.034  30,541 14.683  184 
Israel 0.337  61.894  0.083  3,320 0.390  702 
Italy 0.326  121.637  0.007  1,785 0.255  620 
Jamaica 0.436  0.002  0.000  0 0.000  46 
Japan 0.367  2,780.538  0.011  712,120 7.586  5476 
Jordan 0.384  0.081  0.000  0 0.000  238 
Kazakhstan 0.365  0.053  0.000  0 0.000  41 
Kenya 0.538  0.002  0.000  0 0.000  58 
Korea, Rep. 0.376  413.217  0.016  158,964 4.266  2,440 
Kuwait 0.418  0.004  0.000  0 0.000  219 
Latvia 0.396  0.127  0.005  0 0.000  37 
Lithuania 0.392  0.022  0.000  0 0.000  51 
Luxembourg 0.296  8.778  0.003  421 0.399  108 
Malawi 0.564  0.001  0.000  0 0.000  9 
Malaysia 0.374  5.382  0.003  0 0.000  1,382 
Malta 0.354  0.076  0.005  0 0.000  30 
Mauritius 0.449  0.000  0.000  0 0.000  68 
Mexico 0.415  1.584  0.000  18 0.006  212 
Morocco 0.407  0.228  0.001  0 0.000  90 
Netherlands 0.347  267.005  0.017  38,496 8.827  378 
New Zealand 0.328  4.072  0.029  264 0.081  258 
Nigeria 0.512  0.076  0.001  0 0.000  173 
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North Macedonia 0.386  0.000  0.000  0 0.000  1 
Norway 0.265  22.616  0.018  868 0.168  505 
Oman 0.428  0.002  0.000  0 0.000  110 
Pakistan 0.539  0.365  0.000  0 0.000  474 
Panama 0.401  0.021  0.004  0 0.000  3 
Peru 0.458  0.145  0.000  1 0.000  132 
Philippines 0.487  0.717  0.002  0 0.000  311 
Poland 0.332  1.280  0.003  0 0.000  972 
Portugal 0.348  0.421  0.000  0 0.000  109 
Qatar 0.389  0.002  0.000  0 0.000  49 
Romania 0.413  0.049  0.000  0 0.000  161 
Russian Federation 0.353  17.523  0.001  7 0.002  350 
Saudi Arabia 0.410  7.641  0.000  249 0.096  197 
Serbia 0.419  0.056  0.000  0 0.000  26 
Singapore 0.404  22.038  0.004  4,868 0.373  979 
Slovak Republic 0.357  0.081  0.001  0 0.000  21 
Slovenia 0.338  2.177  0.007  0 0.000  42 
South Africa 0.417  6.168  0.001  199 0.027  605 
Spain 0.310  32.062  0.040  208 0.049  352 
Sri Lanka 0.478  0.030  0.000  0 0.000  295 
Sudan 0.611  0.000  0.000  0 0.000  1 
Sweden 0.302  248.511  0.057  26,051 2.195  1,093 
Switzerland 0.273  520.428  0.027  36,248 5.400  468 
Tanzania 0.546  0.000  0.000  0 0.000  14 
Thailand 0.433  1.208  0.000  3 0.000  909 
Trinidad and Tobago 0.398  0.002  0.000  0 0.000  21 
Tunisia 0.397  0.026  0.000  0 0.000  78 
Turkey 0.370  493.635  0.003  81 0.013  455 
Uganda 0.586  0.000  0.000  0 0.000  9 
Ukraine 0.392  0.394  0.001  0 0.000  46 
United Arab Emirates 0.382  0.025  0.000  0 0.000  140 
United Kingdom 0.300  635.767  0.024  36,927 0.789  4,416 
United States 0.350  5,535.032  0.057  1,197,109 10.693  13,174 
Venezuela, RB 0.381  0.111  0.001  0 0.000  36 
Vietnam 0.491  0.032  0.000  0 0.000  589 
Zambia 0.536  0.038  0.026  0 0.000  22 
Zimbabwe 0.529  3.211  0.001  0 0.000  47 

 
Panel B: Descriptive statistics for the full sample 

Variable Mean Std. Dev. Min P25 Median P75 Max N 
R&Dt+1 0.015 0.051 0.000 0.000 0.000 0.001 0.353 743,870 
LnPatentst+1 0.131 0.651 0.000 0.000 0.000 0.000 9.093 743,870 
LnCitationst+1 0.187 0.949 0.000 0.000 0.000 0.000 11.934 743,870 
Vulnerability 0.380 0.066 0.249 0.341 0.366 0.407 0.619 743,870 
Size 5.017 2.363 −0.650 3.470 4.950 6.507 11.111 739,562 
M/B 2.585 4.926 −3.573 0.726 1.333 2.585 39.186 606,942 
Tangibility 0.268 0.240 0.000 0.052 0.214 0.423 0.905 702,393 
Cash 0.167 0.189 0.000 0.035 0.099 0.225 0.902 629,565 
Free cash flow 0.009 0.185 −1.188 0.001 0.038 0.081 0.285 728,685 
Leverage 0.232 0.218 0.000 0.040 0.190 0.362 1.043 690,589 
ROA 0.049 0.190 −1.107 0.021 0.073 0.130 0.401 728,685 
Capex 0.054 0.066 0.000 0.012 0.032 0.069 0.370 563,009 
LnGDPpcap 9.556 1.408 5.012 8.658 10.264 10.608 11.685 743,870 
GDP growth 0.037 0.032 −0.177 0.018 0.032 0.055 0.262 743,861 
Political stability 0.187 0.873 −2.810 −0.499 0.410 0.937 1.760 648,333 
Uncertainty 0.054 0.048 0.000 0.023 0.043 0.075 0.540 738,811 
Property rights 0.683 0.232 0.050 0.500 0.793 0.900 0.984 698,373 
Credit market 1.173 0.533 0.002 0.709 1.244 1.622 3.090 710,267 
Equity market 0.860 0.471 0.006 0.528 0.782 1.153 3.522 706,339 
HDI 0.805 0.123 0.362 0.727 0.862 0.897 0.954 743,668 
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Table 2 
Climate vulnerability and R&D investment 

 
This table shows the effect of climate vulnerability on R&D investment. The OLS regression is: R&Di,j,t+1 = β0 + β1 Vulnerabilityj,t 
+ δ′X + Firm FE + Year FE + εi,j,t+1. The dependent variable R&Di,j,t+1 is the R&D investment of firm i in country j in year t+1, 
defined as R&D expenses scaled by total assets in year t+1. Vulnerability is a country’s vulnerability to climate disruptions in year 
t. The vector X includes a set of firm-specific control variables as well as country-level factors measured in year t. The coefficients 
and standard errors for Size and M/B are multiplied by 100. All variables are defined in the Appendix. Firm and year fixed effects 
are included where indicated. Numbers in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels, respectively.  
 

  Dependent variable: R&Dt+1 
  (1) (2) (3) (4) 
Vulnerability −0.114*** −0.055*** −0.134*** −0.109*** 

 (0.002) (0.011) (0.015) (0.024) 
Size   −0.041** −0.019 

   (0.019) (0.022) 
M/B   0.002 0.006** 

   (0.002) (0.003) 
Tangibility   0.002*** 0.002** 

   (0.001) (0.001) 
Cash   0.002** 0.002 

   (0.001) (0.001) 
Free cash flow   −0.004** −0.003 

   (0.002) (0.002) 
Leverage   −0.007*** −0.007*** 

   (0.001) (0.001) 
ROA   −0.020*** −0.021*** 

   (0.002) (0.002) 
LnGDPpcap    0.001 

    (0.001) 
GDP growth    −0.015*** 

    (0.002) 
Political stability    0.001*** 

    (0.000) 
Uncertainty    −0.001 

    (0.001) 
Property rights    −0.000 

    (0.001) 
Credit market    0.002*** 

    (0.001) 
Equity market    −0.002*** 

    (0.000) 
HDI    0.030*** 

    (0.010) 
     

Firm fixed effects No Yes Yes Yes 
Year fixed effects No Yes Yes Yes 
Observations 743,870 743,870 515,423 401,509 
Adjusted R2 0.022 0.787 0.815 0.821 
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Table 3 
Climate vulnerability and innovation output 

 
This table shows the effect of climate vulnerability on innovation output. In Columns 1-2, the dependent variables LnPatentst+1 and 
LnPatentst+1, t+3 are defined as the natural logarithm of one plus the number of successful patent applications filed by firm i in 
country j in year t+1 and the subsequent three years (t+1, t+2, and t+3), respectively. In Columns 3-4, the dependent variables 
LnCitationst+1 and LnCitationst+1, t+3 are defined as the natural logarithm of one plus the number of citations received by patents 
filed by firm i in country j in year t+1 and the subsequent three years (t+1, t+2, and t+3), respectively. Vulnerability is the climate 
vulnerability of country j in year t. The coefficient and standard error for M/B are multiplied by 100. All variables are defined in 
the Appendix. Firm and year fixed effects are included. Numbers in parentheses are robust standard errors clustered by firm. *, **, 
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  
 

Dependent variable LnPatentst+1 LnPatentst+1,t+3 LnCitationst+1 LnCitationst+1, t+3 
  (1) (3) (4) (6) 
Vulnerability −5.511*** −9.040*** −3.761*** −3.478*** 

 (0.463) (0.667) (0.815) (1.049) 
Size 0.029*** 0.028*** 0.019*** 0.013** 

 (0.002) (0.003) (0.005) (0.006) 
M/B 0.056** 0.081** 0.042 0.037 

 (0.023) (0.033) (0.046) (0.059) 
Tangibility 0.043*** 0.082*** 0.150*** 0.201*** 

 (0.007) (0.011) (0.016) (0.022) 
Cash 0.036*** 0.079*** 0.100*** 0.143*** 

 (0.009) (0.013) (0.019) (0.025) 
Free cash flow 0.053*** 0.094*** 0.158*** 0.220*** 

 (0.018) (0.026) (0.036) (0.046) 
Leverage −0.055*** −0.110*** −0.142*** −0.197*** 

 (0.008) (0.012) (0.017) (0.023) 
ROA −0.062*** −0.095*** −0.175*** −0.229*** 

 (0.019) (0.028) (0.039) (0.050) 
R&D 0.169*** 0.219*** 0.412*** 0.465*** 

 (0.046) (0.071) (0.102) (0.133) 
Capex −0.004 0.010 0.028 0.046* 

 (0.010) (0.014) (0.021) (0.027) 
LnGDPpcap −0.079*** −0.217*** −0.096*** −0.170*** 

 (0.010) (0.014) (0.015) (0.020) 
GDP growth −0.030 −0.025 0.188*** 0.225*** 

 (0.032) (0.045) (0.061) (0.079) 
Political stability 0.058*** 0.057*** −0.071*** −0.131*** 

 (0.005) (0.007) (0.009) (0.012) 
Uncertainty 0.085*** 0.085*** 0.036 −0.032 

 (0.022) (0.030) (0.033) (0.042) 
Property rights 0.218*** 0.531*** 0.454*** 0.726*** 

 (0.019) (0.029) (0.037) (0.048) 
Credit market 0.031*** 0.044*** −0.050*** −0.089*** 

 (0.009) (0.013) (0.018) (0.023) 
Equity market −0.086*** −0.167*** −0.146*** −0.222*** 

 (0.006) (0.008) (0.010) (0.013) 
HDI 2.243*** 6.360*** 8.989*** 14.201*** 

 (0.149) (0.236) (0.345) (0.460) 
     

Firm fixed effects Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes 
Observations 376,929 376,929 376,929 376,929 
Adjusted R2 0.835 0.846 0.703 0.736 
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Table 4 
Climate vulnerability and the sensitivity of R&D to the investment opportunity set 

 
This table shows the sensitivity of R&D investment to the investment opportunity set (Tobin’s Q) conditional on the level of climate 
vulnerability. The OLS regression is: R&Di,j,t+1 = β0 + β1 Tobin’s Qi,j,t × Vulnerabilityj,t + β2 Tobin’s Qi,j,t + β3 Vulnerabilityj,t + 
δ′X + Firm FE + Year FE + εi,j,t+1. The dependent variable R&Di,j,t+1 is the R&D investment of firm i in country j in year t+1. 
Tobin’s Q is calculated as (total assets + market value of equity – book value of equity – deferred taxes) divided by total assets in 
year t. Vulnerability is a country’s vulnerability to climate disruptions in year t. Firm and year fixed effects are included. The 
coefficients and standard errors for M/B and Political stability are multiplied by 100. Numbers in parentheses are robust standard 
errors clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  
 

  Dependent variable: R&Dt+1 
  (1) (2) 
Tobin’s Q × Vulnerability −0.016*** −0.015*** 

 (0.001) (0.001) 
Tobin’s Q 0.008*** 0.007*** 

 (0.000) (0.001) 
Vulnerability −0.087*** −0.047* 

 (0.013) (0.025) 
Size  −0.003*** 

  (0.000) 
M/B  0.015*** 

  (0.003) 
Tangibility  0.006*** 

  (0.001) 
Cash  −0.002 

  (0.001) 
Free cash flow  −0.004** 

  (0.002) 
Leverage  −0.009*** 

  (0.001) 
ROA  −0.020*** 

  (0.002) 
LnGDPpcap  0.004*** 

  (0.001) 
GDP growth  −0.017*** 

  (0.003) 
Political stability  0.030 

  (0.031) 
Uncertainty  0.001 

  (0.001) 
Property rights  0.001 

  (0.001) 
Credit market  0.002** 

  (0.001) 
Equity market  −0.002*** 

  (0.000) 
HDI  0.028*** 

  (0.011) 
   

Firm fixed effects Yes Yes 
Year fixed effects Yes Yes 
Observations 607,131 401,509 
Adjusted R2 0.821 0.831 
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Table 5 
The relation between climate vulnerability and incentive to innovate 

 
This table shows the effect of climate vulnerability on the number of patent inventors. Following Bhattacharya et al. (2017), the 
estimated regression is: LnInventorsk,j,t+1 = β0 + β1 Vulnerabilityj,t + δ′X + Country-industry FE + Year FE + εk,j,t+1. The dependent 
variable LnInventorsk,j,t+1 is the natural logarithm of one plus the number of inventors who have ever filed at least one patent of 
industry k of country j in year t+1. Vulnerability is country j’s vulnerability to climate disruptions in year t. The vector X includes 
a set of country-level factors measured in year t as well as the lagged number of inventors (LnInventorsk,j,t). Country-industry and 
year fixed effects are included. Numbers in parentheses are two-way clustered standard errors by country-industry and by year. *, 
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  
 

  Dependent variable: LnInventorst+1 
  (1) (2) (3) 
Vulnerability −2.041* −1.872*** −2.268*** 

 (1.116) (0.643) (0.719) 
LnInventorst  0.588*** 0.572*** 

  (0.045) (0.054) 
LnGDPpcap   −0.013 

   (0.018) 
GDP growth   −0.067 

   (0.049) 
Political stability   0.008 

   (0.007) 
Uncertainty   −0.051 

   (0.065) 
Property rights   0.080* 

   (0.041) 
Credit market   0.020 

   (0.013) 
Equity market   −0.033** 

   (0.012) 
HDI   0.792** 

   (0.307) 
    

Country-industry fixed effects Yes Yes Yes 
Year fixed effects Yes Yes Yes 
Observations 61,836 58,552 40,755 
Adjusted R2 0.907 0.934 0.931 
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Table 6 
The effects of climate vulnerability on patent grant announcement abnormal returns and patent value  

Panel A shows mean and median CARs in percentage during the window of (0,+2) around the patent grant announcement date for 
the subsamples of high and low vulnerability (sorted by the yearly median of climate vulnerability index). For market-adjusted 
returns, the raw returns are adjusted by the CRSP value-weighted market returns or the country total return indices from World 
Indices by WRDS database. The t-statistics or p-values of the tests of difference in means (t-test) and in medians (Wilcoxon rank 
sum test) are reported at the bottom; t-statistics and p-values of Wilcoxon signed-rank test are reported in parentheses. Panel B 
shows the effect of climate vulnerability on patent value. The dependent variable Patent valuet+1 is the market value of each patent 
grant (in ten million U.S. dollars) in year t+1, measured as the firm’s stock return in excess of the market return over the three-day 
window around the date of patent approval and multiplied by the firm’s market capitalization on the day prior to the announcement. 
Vulnerability is country j’s climate vulnerability in year t. Firm and year fixed effects are included. Numbers in parentheses are 
robust clustered standard errors by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  
Panel A: Patent grant announcement abnormal returns and climate vulnerability 

  Market-adjusted returns   Raw returns   
  Mean Median   Mean Median Number of patent grants 
High vulnerability 0.027*** −0.140***  0.188*** 0.000*** 1,211,738 
 (8.25) (<.0001)  (48.16) (<.0001)  
Low vulnerability 0.062*** −0.018***  0.227*** 0.162*** 1,647,912 
 (19.69) (<.0001)  (44.33) (<.0001)  
Difference (High − Low) −0.035*** −0.123***  −0.039*** −0.162***  
 (−7.65) (<.0001)   (−6.07) (<.0001)   

 
Panel B: Patent value and climate vulnerability 

  Dependent variable: Patent valuet+1 
  (1) (2) 
Vulnerability −3.068** −6.030** 

 (1.499) (2.835) 
Size  −0.195*** 

  (0.036) 
M/B  −0.074*** 

  (0.006) 
Tangibility  2.338*** 

  (0.264) 
Cash  0.949*** 

  (0.166) 
Free cash flow  1.039*** 

  (0.316) 
Leverage  1.905*** 

  (0.126) 
ROA  −1.461*** 

  (0.323) 
R&D  0.451* 

  (0.239) 
Capex  −1.349*** 

  (0.496) 
LnGDPpcap  0.023 

  (0.127) 
GDP growth  −0.052*** 

  (0.010) 
Political stability  −0.021 

  (0.070) 
Uncertainty  2.089*** 

  (0.369) 
Property rights  0.240 

  (0.261) 
Credit market  0.074 

  (0.104) 
Equity market  −0.181* 

  (0.105) 
HDI  −5.445** 

  (2.518)    
Firm fixed effects Yes Yes 
Year fixed effects Yes Yes 
Observations 2,654,125 2,396,302 
Adjusted R2 0.010 0.011 
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Table 7 
Subsample analysis for the relation between climate vulnerability and R&D investment 

 
This table shows subsample results of the effect of climate vulnerability on R&D investment based on Equation (1). In Columns 
1-2, the sample of Table 2 is divided into high and low groups by the median of product development cycle, measured as the 
industry-level R&D amortizable life. In Columns 3-4, our sample is divided into high and low groups by the median of Google 
search volume within each country for terms associated with the topic of “Climate variability and change”. Columns 5-6 report the 
subsample results for developed and developing countries. The dependent variable R&Di,j,t+1 is the R&D investment of firm i in 
country j in year t+1. Vulnerability is country j’s climate vulnerability in year t. The coefficients and standard errors for Size and 
M/B are multiplied by 100. All variables are defined in the Appendix. Firm and year fixed effects are included where indicated. 
Numbers in brackets are z-statistics for the tests of the difference in coefficients of Vulnerability between two subsamples. Numbers 
in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 
levels, respectively.  
 

  Dependent variable: R&Dt+1 
 Product development cycle Google search volume Developed 

countries  
Developing  
countries  high low high low 

  (1) (2) (3) (4) (5) (6) 
Vulnerability −0.153*** −0.068* −0.181*** −0.074** −0.087** −0.024*** 

 (0.033) (0.036) (0.042) (0.038) (0.040) (0.005) 
Size 0.038 −0.106*** 0.110*** 0.057 −0.057** 0.048*** 

 (0.031) (0.031) (0.033) (0.035) (0.024) (0.007) 
M/B 0.003 0.008** −0.001 0.005 0.006** 0.002*** 

 (0.003) (0.004) (0.004) (0.004) (0.003) (0.001) 
Tangibility 0.005*** −0.001 0.002 −0.000 0.003*** −0.001*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) 
Cash 0.008*** −0.007*** 0.002 0.002 0.003** −0.005*** 

 (0.002) (0.002) (0.002) (0.002) (0.001) (0.000) 
Free cash flow 0.000 −0.006** 0.002 0.004 0.002 −0.004*** 

 (0.003) (0.002) (0.003) (0.003) (0.002) (0.001) 
Leverage −0.008*** −0.005*** −0.008*** −0.005*** −0.006*** −0.002*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) 
ROA −0.027*** −0.011*** −0.020*** −0.020*** −0.019*** 0.004*** 

 (0.003) (0.002) (0.003) (0.003) (0.002) (0.001) 
LnGDPpcap −0.001* 0.003*** 0.001 −0.001 −0.002*** 0.007*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) 
GDP growth −0.025*** −0.002 −0.004 −0.017*** 0.009*** −0.018*** 

 (0.003) (0.003) (0.004) (0.006) (0.004) (0.001) 
Political stability 0.002*** 0.000 0.001 −0.001** −0.000 −0.002*** 

 (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) 
Uncertainty −0.003 0.002 −0.005** 0.001 −0.000 −0.003*** 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.000) 
Property rights 0.001 −0.003* 0.004*** −0.008*** −0.008*** 0.006*** 

 (0.002) (0.002) (0.001) (0.002) (0.002) (0.000) 
Credit market 0.002* 0.003*** 0.005*** 0.001 0.001* 0.007*** 

 (0.001) (0.001) (0.001) (0.002) (0.001) (0.000) 
Equity market −0.002*** −0.001** −0.001 −0.004*** −0.003*** −0.000*** 

 (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) 
HDI 0.071*** −0.027* −0.008 0.016 0.061*** 0.018*** 

 (0.014) (0.015) (0.015) (0.019) (0.012) (0.002) 
       

Firm fixed effects Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Observations 225,595 175,914 156,880 164,992 271,428 130,081 
Adjusted R2 0.840 0.757 0.857 0.843 0.845 0.706 
Difference −0.085* −0.107* −0.063 
z-statistic [−1.75] [−1.90] [−1.57] 
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Table 8 

Climate vulnerability and innovation strategies 
 
This table shows the effect of climate vulnerability on innovation strategies. A patent is classified as climate change mitigation 
technologies (CCMTs) if its Cooperative Patent Classification (CPC) is Y02 or Y04S. A patent is categorized as exploitative if at 
least 60% of its citations are based on the firm’s existing knowledge and as exploratory, if at least 60% of its citations are based on 
new knowledge (i.e., patents not in the firm’s existing knowledge). The dependent variables CCMT ratio, Exploratory ratio, and 
Exploitative ratio are defined as the number of CCMT patents, exploratory, or exploitative patents filed by firm i in country j over 
years t+1 to t+3 divided by the total number of patents filed by firm i over years t+1 to t+3. Vulnerability is country j’s climate 
vulnerability in year t. The sample is restricted to firms that have filed at least one patent during our sample period. The coefficients 
and standard errors for M/B are multiplied by 100. All variables are defined in the Appendix. Firm and year fixed effects are 
included where indicated. Numbers in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels, respectively.  
 

Dependent variable: CCMT ratio Exploratory ratio Exploitative ratio 
  (1) (2) (3) 
Vulnerability 0.323** −1.658** 1.026* 

 (0.154) (0.653) (0.619) 
Size 0.001 0.007*** 0.016*** 

 (0.001) (0.002) (0.002) 
M/B 0.006 0.018 0.073*** 

 (0.006) (0.024) (0.022) 
Tangibility −0.028*** −0.045** −0.026** 

 (0.006) (0.021) (0.013) 
Cash −0.004* 0.002 0.006 

 (0.002) (0.011) (0.008) 
Free cash flow 0.011** −0.019 0.029* 

 (0.004) (0.024) (0.017) 
Leverage 0.005** −0.025*** 0.009 

 (0.002) (0.009) (0.008) 
ROA −0.011** 0.021 −0.020 

 (0.005) (0.025) (0.017) 
R&D 0.012 −0.090*** 0.067** 

 (0.008) (0.031) (0.027) 
Capex −0.002 0.048 0.025 

 (0.012) (0.043) (0.026) 
LnGDPpcap 0.041*** 0.176*** 0.079*** 

 (0.005) (0.017) (0.011) 
GDP growth −0.008 0.145 −0.196* 

 (0.037) (0.143) (0.111) 
Political stability 0.013*** 0.069*** −0.007 

 (0.003) (0.009) (0.006) 
Uncertainty −0.013 −0.046 0.002 

 (0.015) (0.050) (0.037) 
Property rights −0.053*** −0.532*** −0.356*** 

 (0.010) (0.037) (0.026) 
Credit market −0.024*** −0.017 0.028*** 

 (0.003) (0.014) (0.010) 
Equity market −0.002 −0.033*** 0.005 

 (0.003) (0.012) (0.008) 
HDI −0.419*** −3.959*** −1.314*** 

 (0.072) (0.314) (0.187) 
    

Firm fixed effects Yes Yes Yes 
Year fixed effects Yes Yes Yes 
Observations 56,543 56,543 56,543 
Adjusted R2 0.430 0.377 0.427 
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Table 9 
Climate-related natural disasters and R&D investment: Difference-in-differences regression analysis 

 
This table shows the effect of climate-related natural disasters on R&D investment using a difference-in-differences (DID) regression analysis. These events include 
the 2003 European heatwave (especially France), the 2004 Asian tsunami, Japan’s 2011 earthquake and tsunami, and Thailand’s 2011 flooding. The DID regression is as follows: 
R&Di,j,t = β0 + β1 Treatj × Postj,t + δ′X + Firm FE + Year FE + εi,j,t. The dependent variable R&Di,j,t is the R&D investment of firm i in country j in year t. Treatj is a dummy equal 
to one for the treated country j and zero otherwise. Postj,t is a dummy that equals one for post-disaster years and zero otherwise. The vector X includes the same control variables as 
in Equation (1). Firm and year fixed effects are included where indicated. Treat and Post dummies are omitted due to collinearity with fixed effects. Columns 1, 3, 5, 7, and 9 use all 
other countries as the control groups, while Columns 2, 4, 6, 8, and 10 only use the treated country or countries. The DID regression uses an event window of (y−3, y+3) around a 
natural disaster event. The most affected countries by the 2003 European heatwave include France, Germany, Spain, Italy, UK, Netherlands, Portugal, Belgium, Switzerland, Austria, 
Finland, Denmark, and Ireland. For the 2004 Asian tsunami, our sample includes the 6 most-affected countries: Indonesia, Sri Lanka, India, Thailand, Malaysia, and Tanzania. 
Numbers in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  
 

  Dependent variable: R&Dt+1 

 2003 France heatwave  2003 European heatwave  2004 Asian tsunami  Japan 2011 earthquake & tsunami  Thailand 2011 flooding 
  (1) (2)   (3) (4)   (5) (6)   (7) (8)   (9) (10) 
Treat × Post −0.007*** −0.009***  −0.003*** −0.012***  −0.001*** −0.001***  −0.001** −0.003***  −0.001** −0.001* 

 (0.002) (0.002)  (0.001) (0.001)  (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.001) 

               
Firm-level controls Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Country-level controls Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Firm fixed effects Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Year fixed effects Yes No  Yes No  Yes No  Yes No  Yes No 
Observations 79,063 2,057  79,063 14,645  97,758 28,500  153,576 22,955  153,576 2,410 
Adjusted R2 0.863 0.748   0.863 0.744   0.859 0.474   0.863 0.865   0.887 0.898 
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Table 10 
Robustness checks: Firm-level climate change exposure 

This table shows the effect of firm-level climate risk exposure on R&D investment and innovation performance. The firm-level 
measures of climate change exposure are constructed by Sautner, van Lent, Vilkov, and Zhang (2020), using transcripts of quarterly 
earnings conference calls. By their definition, climate change exposure (CCExposure) is based on the frequency of climate change 
bigrams that occur in a given transcript, scaled by the total number of bigrams in the transcript. The measure of climate change risk 
(CCRisk) is constructed by counting the relative frequency of climate change bigrams mentioned in the same sentence with the 
words “risk” or “uncertainty” (or their synonyms). The value of CCExposure and CCRisk are multiplied by 1000. The sample 
period is 2002-2019. Country, industry, and year fixed effects are included where indicated. Numbers in parentheses are robust 
standard errors clustered by firm. The coefficients and standard errors for M/B are multiplied by 100. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels, respectively.  
 

Dependent variable R&Dt+1 LnPatentst+1 LnCitationst+1 
  (1) (2) (3) (4) (5) (6) 
CCExposure −0.002***  −0.010**  −0.012**  

 (0.000)  (0.004)  (0.005)  
CCRisk  −0.011***  −0.081**  −0.099** 

  (0.003)  (0.039)  (0.048) 
Size −0.003*** −0.003*** 0.365*** 0.366*** 0.360*** 0.361*** 

 (0.000) (0.000) (0.014) (0.014) (0.014) (0.014) 
M/B 0.095*** 0.096*** 0.991*** 0.992*** 0.838*** 0.840*** 

 (0.012) (0.012) (0.170) (0.170) (0.183) (0.182) 
Tangibility 0.001 −0.001 −0.167** −0.176** −0.130 −0.139 

 (0.003) (0.003) (0.078) (0.078) (0.085) (0.085) 
Cash 0.136*** 0.137*** 1.108*** 1.111*** 1.277*** 1.280*** 

 (0.005) (0.005) (0.084) (0.084) (0.096) (0.096) 
Free cash flow −0.053*** −0.053*** −0.193 −0.190 −0.028 −0.024 

 (0.009) (0.009) (0.142) (0.142) (0.161) (0.161) 
Leverage −0.010*** −0.009*** −0.470*** −0.468*** −0.481*** −0.479*** 

 (0.003) (0.003) (0.065) (0.065) (0.074) (0.074) 
ROA −0.144*** −0.143*** 0.289** 0.293** 0.058 0.062 

 (0.009) (0.009) (0.146) (0.145) (0.163) (0.163) 
LnGDPpcap 0.010*** 0.010*** 0.086 0.088 −0.230** −0.227** 

 (0.003) (0.003) (0.093) (0.092) (0.116) (0.116) 
GDP growth 0.012 0.012 −1.842*** −1.844*** −1.366** −1.368** 

 (0.018) (0.018) (0.432) (0.432) (0.547) (0.547) 
Political stability 0.004** 0.004** 0.143*** 0.142*** −0.061 −0.061 

 (0.002) (0.002) (0.053) (0.053) (0.073) (0.073) 
Uncertainty 0.006 0.006 0.833*** 0.838*** 0.966*** 0.972*** 

 (0.005) (0.005) (0.169) (0.169) (0.200) (0.200) 
Property rights −0.020*** −0.021*** −1.701*** −1.708*** −1.564*** −1.572*** 

 (0.008) (0.008) (0.276) (0.276) (0.352) (0.352) 
Credit market 0.005 0.004 0.018 0.016 0.189* 0.187* 

 (0.003) (0.003) (0.083) (0.083) (0.110) (0.111) 
Equity market 0.005** 0.005** −0.421*** −0.421*** −0.713*** −0.713*** 

 (0.002) (0.002) (0.066) (0.066) (0.089) (0.089) 
HDI −0.032 −0.037 0.887 0.871 9.009*** 8.997*** 

 (0.056) (0.057) (1.677) (1.675) (2.140) (2.140) 
       

Country fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Observations 59,408 59,408 59,408 59,408 59,408 59,408 
Adjusted R2 0.617 0.615 0.422 0.421 0.382 0.382 
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Internet Appendix 
 

Table IA1 
Average cross-country time-series correlations 

This table reports the average cross-country time-series correlations of our main variables. The time-series correlations of the variables are calculated for each country. The statistics 
reported are the averages of these correlations across all the countries. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) 

(1) Vulnerability                    
(2) R&Dt+1 −0.022                    
(3) LnPatentst+1 0.023  0.083                   
(4) LnCitationst+1 0.053  0.073  0.850                  
(5) Size −0.011  −0.094  0.200  0.167                 
(6) M/B −0.008  0.051  0.015  0.016  −0.023                
(7) Tangibility 0.031  −0.118  −0.010  −0.005  0.157  −0.062               
(8) Cash −0.020  0.156  0.015  0.015  −0.116  0.116  −0.327              
(9) Free cash flow 0.029  −0.121  0.052  0.046  0.239  0.027  0.118  −0.041             
(10) Leverage −0.019  −0.066  −0.012  −0.011  0.169  −0.023  0.217  −0.339  −0.181            
(11) ROA 0.038  −0.114  0.060  0.055  0.230  0.095  0.095  0.006  0.889  −0.156           
(12) Capex 0.052  −0.032  0.011  0.015  0.064  0.052  0.382  −0.086  0.165  0.078  0.169          
(13) LnGDPpcap −0.303  0.028  −0.023  −0.076  0.060  0.023  −0.047  0.023  −0.029  −0.002  −0.046  −0.034         
(14) GDP growth 0.027  0.007  0.000  0.015  −0.008  0.055  −0.011  0.013  0.050  −0.029  0.054  0.051  −0.034        
(15) Political stability 0.024  −0.004  0.013  0.025  0.005  0.015  0.016  −0.005  0.010  0.008  0.011  0.030  −0.013  0.053       
(16) Uncertainty −0.130  0.012  −0.024  −0.036  0.001  −0.010  −0.011  0.005  −0.027  0.013  −0.035  −0.040  0.078  −0.125  −0.069      
(17) Property rights −0.034  0.011  0.000  0.007  −0.003  −0.004  −0.008  0.012  −0.009  0.011  −0.015  −0.028  0.055  −0.061  0.146  0.004     
(18) Credit market −0.248  0.015  −0.014  −0.033  0.039  −0.001  −0.015  0.000  −0.029  0.022  −0.041  −0.014  0.306  −0.251  −0.060  0.096  0.039    
(19) Equity market 0.020  0.004  −0.008  −0.004  0.031  0.072  −0.017  0.025  0.027  −0.041  0.028  0.030  −0.031  0.239  0.000  −0.112  −0.053  0.056   
(20) HDI −0.524  0.044  −0.052  −0.106  0.027  0.021  −0.056  0.032  −0.050  0.021  −0.065  −0.095  0.645  −0.119  −0.083  0.247  0.115  0.359  −0.026  

 

 

  



 

52 
 

Table IA2 
Subsamples by innovation strategies 

 
This table shows the subsample results of innovation strategies. A patent is classified as climate change mitigation technologies (CCMTs) if its Cooperative Patent Classification 
(CPC) is Y02 or Y04S. A patent is categorized as exploitative if at least 60% of its citations are based on the firm’s existing knowledge and as exploratory if at least 60% of its 
citations are based on new knowledge (i.e., patents not in the firm’s existing knowledge). The dependent variables LnNonCCMT, LnCCMT, LnExploratory, and LnExploitative are 
defined as the natural logarithm of one plus the number of non-CCMT patents, CCMT patents, exploratory patents, or exploitative patents filed by firm i in country j in year t+1 or 
over years t+1 to t+3, respectively. Vulnerability is country j’s climate vulnerability in year t. All variables are defined in the Appendix. Firm and year fixed effects are included 
where indicated. Numbers in parentheses are robust standard errors clustered by firm. Numbers in brackets are z-statistics for the tests of the difference in coefficients of Vulnerability 
between two subsamples. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.   
 

Dependent variable:  LnNonCCMTt+1 LnCCMTt+1 LnNonCCMTt+1, t+3 LnCCMTt+1, t+3 LnExploratoryt+1 LnExploitativet+1 LnExploratoryt+1, t+3 LnExploitativet+1, t+3 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Vulnerability −5.266*** −1.897*** −8.823*** −3.617*** −7.106*** −5.245*** −4.553*** −3.088*** 

 (0.456) (0.226) (0.660) (0.335) (0.601) (0.372) (0.446) (0.268) 
         

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 376,929 376,929 376,929 376,929 376,929 376,929 376,929 376,929 
Adjusted R2 0.835 0.714 0.845 0.750 0.806 0.811 0.793 0.788 
Difference −3.370*** −5.206*** −1.861*** −1.465*** 
z-statistic [−6.62] [−7.03] [−2.63] [−2.82] 
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Table IA3 
Robustness checks: Alternative measure of climate vulnerability 

This table reports the results using alternative measures of climate vulnerability. The sample period is 1995-2019. Panel A uses the Global Climate Risk Index (CRI) compiled and 
published by Germanwatch to measure climate risk by country. Climate Risk Index is the Climate Risk Index score of country j in year t multiplied by −1 so that a higher score 
indicates greater climate risk. Climate Risk Index is divided by 100 in regressions. Panel B uses the Notre Dame-Global Adaptation Index (ND-GAIN) Country Index. This index 
measures both dimensions: climate vulnerability and readiness. It shows a country’s current vulnerability to climate disruptions and also assesses a country’s readiness to leverage 
private and public sector investment for adaptive actions. The ND-GAIN score is computed by subtracting the vulnerability score from the readiness score for each country, and 
scale the scores to give a value 0 to 100: ND-GAIN score = (readiness score − vulnerability score +1) * 50. The ND-GAIN score is divided by 100 in regressions. Firm and year 
fixed effects are included where indicated. Numbers in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 
1% levels, respectively.  
 
Panel A: Germanwatch Global Climate Risk Index 

Dependent variable: R&Dt+1 LnPatentst+1 LnCitationst+1 LnPatentst+1,t+3 LnCitationst+1,t+3 
  (1) (2) (3) (4) (5) 
Climate Risk Index −0.001** −0.016*** −0.109*** −0.067*** −0.182*** 

 (0.000) (0.006) (0.011) (0.009) (0.014) 
      

Controls Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes 
Observations 401,472 376,893 376,893 376,893 376,893 
Adjusted R2 0.821 0.835 0.703 0.845 0.736 

 

Panel B: Notre Dame-Global Adaptation Index (ND-GAIN) 
Dependent variable: R&Dt+1 LnPatentst+1 LnCitationst+1 LnPatentst+1,t+3 LnCitationst+1,t+3 
  (1) (2) (3) (4) (5) 
ND-GAIN score 0.089*** 1.372*** 0.499*** 2.474*** 1.175*** 

 (0.011) (0.160) (0.183) (0.239) (0.436) 
      

Controls Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes 
Observations 401,509 376,929 376,929 376,929 376,929 
Adjusted R2 0.821 0.835 0.703 0.846 0.736 
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Table IA4 
Robustness checks: Alternative measures of innovation input & output and alternative fixed effects 

Panel A reports results using alternative measures of innovation input and output. For Columns 1-2, the dependent variables R&Di,j,t+2 and R&Di,j,t+3 are the R&D expenses scaled 
by total assets of firm i in country j in year t+2 or t+3. In Column 3, the dependent variable R&D growtht+1 is the R&D growth of firm i in country j in year t+1 and is defined as ln(1 
+ R&Di,j,t+1) – ln(1 + R&Di,j,t). For Columns 4-7, the dependent variables are the natural logarithm of one plus the number of patent applications (or citations received by patents) 
filed by firm i in country j in year t+2 or t+3. In Column  8, the dependent variable Patent growtht+1 is the measure of innovation growth of firm i in country j in year t+1 and is 
defined as ln(1 + Patenti,j,t+1) – ln(1 + Patenti,j,t). Vulnerability is a country’s vulnerability to climate disruptions in year t. The vector X includes a set of firm-specific control variables 
as well as country-level factors measured in year t. Panel B shows the results using alternative fixed effects. Firm, year, country, industry, country-industry, or industry-year fixed 
effects are included where indicated. All variables are defined in the Appendix. Numbers in parentheses are robust standard errors clustered by firm. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels, respectively.  
 
Panel A: Alternative measures of innovation input and output 

Dependent variable:  R&Dt+2 R&Dt+3 R&D growtht+1 LnPatentst+2 LnPatentst+3 LnCitationst+2 LnCitationst+3 Patent growtht+1 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Vulnerability −0.143*** −0.131*** −1.604*** −6.540*** −7.023*** −4.317*** −3.617*** −1.905*** 

 (0.025) (0.026) (0.255) (0.425) (0.437) (1.027) (1.054) (0.185) 
         

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 359,318 320,858 401,455 338,894 303,232 338,894 303,232 376,929 
Adjusted R2 0.824 0.830 0.119 0.833 0.831 0.746 0.786 0.102 

 
 
Panel B: Alternative fixed effects 

Dependent variable:  R&Dt+1 LnPatentst+1 LnCitationst+1 R&Dt+1 LnPatentst+1 LnCitationst+1 R&Dt+1 LnPatentst+1 LnCitationst+1 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
vulnerability −0.073** −6.573*** −3.574*** −0.071*** −7.112*** −4.196*** −0.044** −7.046*** −3.788*** 

 (0.034) (0.435) (0.689) (0.026) (0.445) (0.708) (0.018) (0.420) (0.664) 
          

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Country-industry fixed effects Yes Yes Yes No No No No No No 
Industry-year fixed effects Yes Yes Yes Yes Yes Yes No No No 
Country fixed effects No No No Yes Yes Yes Yes Yes Yes 
Industry fixed effects No No No No No No Yes Yes Yes 
Year fixed effects No No No No No No Yes Yes Yes 
Observations 400,907 376,504 376,504 400,907 376,504 376,504 400,907 376,504 376,504 
Adjusted R2 0.481 0.328 0.334 0.427 0.272 0.294 0.424 0.261 0.256 
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Table IA5 
Robustness checks: Alternative samples 

 
Panel A uses a subsample of non-U.S. firms. Panel B is restricted to firms with at least one patent application during our sample period. Panel C uses a sample period of 1995-2017 
to mitigate the truncation issue due to the patent application-grant lag. Firm and year fixed effects are included where indicated. Numbers in parentheses are robust standard errors 
clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
 
Panel A: Non-US firms only 

Dependent variable: R&Dt+1 LnPatentst+1 LnCitationst+1 LnPatentst+1,t+3 LnCitationst+1,t+3 
  (1) (2) (3) (4) (5) 
Vulnerability −0.144*** −3.797*** −6.413*** −5.391*** −7.838*** 

 (0.023) (0.412) (0.720) (0.573) (0.892) 
      

Controls Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes 
Observations 318,261 297,563 297,563 297,563 297,563 
Adjusted R2 0.745 0.793 0.655 0.792 0.664 

 
Panel B: Firms with at least one patent application during the sample period 

Dependent variable: R&Dt+1 LnPatentst+1 LnCitationst+1 LnPatentst+1,t+3 LnCitationst+1,t+3 
  (1) (2) (3) (4) (5) 
Vulnerability −0.045** −15.299*** −47.714*** −23.596*** −51.705*** 

 (0.021) (4.829) (8.093) (5.922) (8.679) 
      

Controls Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes 
Observations 58,612 56,543 56,543 56,543 56,543 
Adjusted R2 0.910 0.824 0.712 0.837 0.760 

 
Panel C: Sample period of 1995-2017 

Dependent variable: R&Dt+1 LnPatentst+1 LnCitationst+1 LnPatentst+1,t+3 LnCitationst+1,t+3 
  (1) (2) (3) (4) (5) 
Vulnerability −0.078*** −4.599*** −2.268*** −7.621*** −1.227** 

 (0.024) (0.384) (0.753) (0.557) (0.607) 
      

Controls Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes 
Observations 374,554 351,439 351,439 351,439 351,439 
Adjusted R2 0.823 0.865 0.724 0.874 0.756 
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