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1. Introduction

Circuit breakers in financial markets based on indices are widely implemented in many

countries (e.g., the United States, France, Canada, and China) as one of the measures

aimed at stabilizing market prices in bad times. In most of these markets, when the

percentage decline in a market index reaches a regulatory threshold, the circuit breaker

is triggered and trading is halted for a period of time for the entire market. Recent

COVID-19 fears triggered circuit breakers multiple times across many countries including

the United States, Japan, and South Korea. For example, circuit breakers on the S&P

500 were triggered twice during the week of March 9, 2020 and plunged almost 10% on

March 12, 2020. In a dramatic move, Chinese regulators removed a four-day-old circuit

breakers rule after it was triggered twice in the week of January 7, 2016. The existing

literature on circuit breakers (e.g., Chen, Petukhov, and Wang (2017), Greenwald and

Stein (1991), Subrahmanyam (1994)) has examined the impact of circuit breakers on the

return and volatility of a stock index as a whole. One open question is whether circuit

breakers can adversely affect stock return contagion and volatility contagion and thus

increase the systemic risk in bad times. In this paper, we develop a continuous-time

equilibrium model to shed some light on this important issue.

Contrary to the regulatory goals, we show that in bad times, circuit breakers can cause

crash contagion, volatility contagion, and can increase cross-stock return correlations

and market volatility. Our model suggests that market-wide circuit breakers may be a

source of financial contagion and a channel through which idiosyncratic risks become

systemic risks.1 In particular, the circuit breakers might have significantly exacerbated

the multiple market plunges and the extreme volatilities triggered by the COVID-19

pandemic. Our findings can also help explain the concurrence of the implementation of

the circuit breakers rule and the significant market tumble in the week of January 7, 2016

in Chinese stock markets. We propose an alternative circuit breaker approach based on

individual stocks (rather than an index) that does not cause either correlation or any

contagion.2

In our model, investors can invest in one risk-free asset and two (groups of) risky

assets (“stocks”) with independent dividend processes to maximize expected utility from

1In a previous version, using a simple 3 period model we show that all the main results hold. To save
space, we do not include it in this version, but available from the authors.

2Needless to say, circuit breakers may play a positive role in stabilizing markets. For example, they
may reduce the effect of overreaction, panic, and herding on stock prices. Our model does not consider
some potential benefits of market closure that can potentially justify the imposition of circuit breakers
and is designed to shed light on some potential costs of imposing circuit breakers.
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their final wealth at time T . Investors have stochastically heterogeneous beliefs about the

expected growth rates of the dividends. To cleanly identify the role of circuit breakers

in causing contagion and correlations, we assume that the investors have exponential

preferences: As a result, in the absence of circuit breakers, the equilibrium stock returns

would be independent. The stock market is subject to a market-wide circuit breaker rule

which stipulates that if the sum of the two stock prices (the index) reaches a threshold,

the entire stock market is closed until T .

The intuitions for our main results that circuit breakers can cause crash contagion

and volatility contagion, and can increase return correlations and market volatility are as

follows. After the circuit breaker is triggered, the market is closed, and thus risk sharing

is reduced, which in turn causes stock prices to be likely lower than those without market

closure. Before the circuit breaker is triggered, when an idiosyncratic negative shock to

the price of one stock occurs, the sum of stock prices (in general, the index of the market)

gets smaller, the probability of reaching the circuit breaker threshold increases, and thus

the price of the other stock may also decrease in anticipation of the more likely market

closure. This link through the circuit breaker induces the positive return correlation,

even though stocks would be independent in the absence of the circuit breaker. When

the idiosyncratic shock is large, and thus the index gets close to the circuit breaker, this

increase in the correlation is even greater because the likelihood of a market closure is

much higher. In the extreme case where one stock crashes and the circuit breaker is

triggered, the price of the other stock with an otherwise continuous price process must

jump down to the after-market-closure level. This results in crash contagion. After some

stocks fall in prices, the index gets closer to the circuit breaker threshold, other stock

prices also fall due to the fear of the more likely market closure, which in turn drives the

index even closer to the threshold, and so on. It is this vicious cycle that may increase

market volatility. In addition, as one stock becomes more volatile (e.g., due to an increase

in the volatility of its dividend), the likelihood of triggering the circuit breaker becomes

greater, and thus the prices of other stocks also become more volatile. This explains why

a crash of one stock may cause another stock to crash and volatility can transmit across

stocks even though stocks would be independent in the absence of circuit breakers. These

contagion effects may transform idiosyncratic risks into systemic risks.

Our results suggest that to reduce the contagion effects and the systemic risks, it is

better to impose circuit breakers on individual stocks. In this alternative approach, the

threshold is based on individual stock returns: when a stock’s circuit breaker is triggered,

only trading in this single stock is halted. This alternative approach does not increase
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correlations or cause any form of contagion. We show that with this alternative approach,

stock prices are generally higher, a market-wide large decline is less likely, and systemic

risk is lower, compared to those with circuit breakers imposed on an index.

In the model, we assume there are only two stocks in the index on which the circuit

breakers are based. One possible concern is that in practice indices typically consist of

hundreds of stocks (if not more) and therefore it is unlikely that one stock’s fall would

trigger the fall of many other stocks. On the other hand, in bad times, markets typically

focus on a small number of key factors such as Federal Reserve decisions and major

economic news. Each of the two stocks in our model represent a large group of stocks

that are significantly exposed to a common risk factor in bad times. When there is a bad

shock in the risk factor, the prices of the large group of stocks go down, which can drag

down another large group of stocks through the circuit breakers connection even though

the latter group of stocks is not exposed to the risk factor.

Our paper is motivated by the seminal paper Chen, Petukhov, and Wang (2017).

Using a dynamic asset pricing model with a single stock (index), Chen, Petukhov, and

Wang (2017) are the first to show in a dynamic equilibrium setting that, contrary to some

of the main goals of regulators, a downside circuit breaker may lower stock price, increase

market volatility, and accelerate market decline (which they call the “magnet effect”).

Different from their focus and findings, this paper focuses on the cross-stock contagion

effect of circuit breaker rules using a dynamic equilibrium model with multiple stocks

and possibly discontinuous stock prices. We show that, in the presence of jump risk, a

crash in one stock can cause a crash in an otherwise independent stock. In addition, in

Chen, Petukhov, and Wang (2017) the main mechanism through which circuit breakers

affect price dynamics is the difference in leverage before and after market closure. Before

market closure, investors face no constraints on leverage, but after market closure they

cannot lever at all. As a result, investors need to completely unlever when the circuit

breaker is triggered, which magnifies the effect of the market closure. In this paper,

there is no constraint on leverage either before or after market closure. In contrast, the

main economic mechanism that drives our results is the circuit breakers’ contagion effect

instead of the leverage constraint effect. Our results suggest that, even in the absence of

leverage constraints, circuit breakers can still have a large impact on price dynamics.

Among other theoretical work related to circuit breakers, Greenwald and Stein (1991)

show that in a market with limited participation, circuit breakers can help coordinate

trading for market participants. Subrahmanyam (1994) demonstrates that circuit break-

ers can increase price volatility because investors may shift their trades to earlier periods
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with a lower liquidity supply if there is information asymmetry. Hong and Wang (2000)

examine the impact of periodic exogenous market closure on asset prices and show that

their model produces rich patterns of trading and returns consistent with empirical find-

ings.

Many empirical studies find evidence against advocates of circuit breakers (including

market-wide circuit breakers, price limits, and trading pauses). For example, exploiting

Nasdaq order book data, Hautsch and Horvath (2019) show that trading pauses cause

extra volatility and reduce price stability and liquidity after the pause, but enhance

price discovery during the break. Kim and Rhee (1997) find evidence from Tokyo Stock

Exchange data suggesting that the price limit system may be ineffective in the sense that

price limits may cause higher volatility levels, prevent prices from efficiently reaching their

equilibrium level, and interfere with trading. Lauterbach and Ben-Zion (1993) examine

the behavior of the Israeli stock market to study the performance of circuit breakers

during the October 1987 crash. They find that circuit breakers reduced the next-day

opening order imbalance and the initial price loss; however, they had no effect on the

long-run response. Lee, Ready, and Seguin (1994) examine the effect of firm-specific New

York Stock Exchange (NYSE) trading halts and find that trading halts do not reduce

either volume or price volatility during the post-halt period. Goldstein and Kavajecz

(2004) focus on the NYSE during the October 1997 market break and demonstrate the

magnet effect, that is, an acceleration of activity approaching the market-wide circuit

breaker.3

Unlike the existing literature, this paper studies impacts of market-wide circuit break-

ers on the dynamic interactions among multiple stocks. Even though circuit breakers are

designed almost exclusively to stabilize markets in bad states, we find that market-wide

circuit breakers can have significant crash and volatility contagion effects, especially in

bad states. To the best of our knowledge, this prediction is new to both the theoretical

and the empirical literature on circuit breakers.

3A few other studies on market halts focus on other related issues. For example, Ackert, Church, and
Jayaraman (2001) conduct an experimental study to analyze the effects of mandated market closures
and temporary halts on market behavior. Corwin and Lipson (2000) study order submission strategies
of traders around market halts, providing a detailed description of the mechanics of trading halts and
identifying traders who provide liquidity. Christie, Corwin, and Harris (2002) study the impact on post-
halt market prices of Nasdaq’s alternative halt and reopening procedures. Their results are consistent
with the hypothesis that increased information transmission during the halt reduces post-halt uncertainty.
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2. The Model

We consider a continuous-time exchange economy over a finite time interval [0, T ]. In-

vestors can trade two risky assets, Stock 1 and Stock 2, and one risk-free asset. Each of

the two stocks in our model represents a group of stocks that share the same significant

risk exposure in bad times. The risk-free asset has a net supply of zero and the interest

rate can be normalized to zero because there is no intertemporal consumption in our

model. The total supply of each stock is one share and every stock pays only a termi-

nal dividend at time T . The dividend processes are exogenous and publicly observed.

Uncertainty about dividends is represented by a standard Brownian motion Zt and an

independent standard Poisson process Nt with jump intensity κ and jump size µJ defined

on a complete probability space (Ω,F ,P). An augmented filtration {Ft}t≥0 is generated

by Zt and Nt.

There is a continuum of investors of Types A and B in the economy, with a mass of

1 for each type. For i = A,B and j = 1, 2, Type i investors are initially endowed with

θij0 shares of Stock j but no risk-free asset, with 0 ≤ θij0 ≤ 1 and θAj0 + θBj0 = 1. The

probability measure Type A investors use is PA, which is the same as the true probability

measure P. Under Type A’s probability measure, Stock 1’s dividend process evolves as:

dD1,t = µ1dt+ σdZt, (1)

and Stock 2’s dividend process follows a jump process with drift:

dD2,t = µ2dt+ µJ(dNt − κAdt), (2)

where Stock 1’s expected dividend growth rate µ1, Stock 1’s dividend volatility σ, Stock

2’s expected dividend growth rate µ2 and jump intensity κA are all constants, the com-

pensated Poisson process dNt − κAdt is a martingale under P, and Dj,0 = 1 for j = 1, 2.

Relative to Type A investors, Type B investors have different beliefs about the divi-

dend process D1,t and employ a different probability measure PB, under which the divi-

dend process D1,t evolves as

dD1,t = µB1,tdt+ σdZB
t , (3)

where ZB
t is a Brownian motion under measure PB, and µB1,t ≡ µ1 + δ1,t for a stochastic

process δ1,t ( specified below) that measures the disagreement between Type A and Type

B investors about the growth rate of the dividend process D1,t. Under PB, the dividend
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process D2,t evolves as

dD2,t = µB2,tdt+ µJ(dNB
t − κBdt), (4)

where under measure PB, NB
t is a non-homogeneous Poisson process with jump intensity

κBt and jump size µJ , and µB2,t is Stock 2’s expected dividend growth rate. For expositional

simplicity, we assume κBt = κAδ2,t, where δ2,t (specified below) measures the disagreement

between Type A and Type B investors about the jump intensity of process D2,t. Similar

to D1,t, we assume that Type A and Type B investors also disagree on the expected

growth rate of D2,t. For simplicity, we assume that this disagreement only stems from

the disagreement on the jump intensity. In other words, conditional on no jumps, Type

A and B investors agree on Stock 2’s expected growth rate, i.e., µB2,t−µJκB2,t = µ2−µJκA.

The Radon-Nikodym derivative between the two probability measures can therefore

be written as.

ηT =
dPB

dPA
|FT = e

∫ T
0

δ1,t
σ
dZt−

∫ T
0

δ21,t

2σ2
dt · eκA

∫ T
0 (1−δ2,t)dt

NT∏
i=1

δ2,ti , (5)

where ti, i = 1, 2, ... are jump times before T . We define

η1,T = e
∫ T
0

δ1,t
σ
dZt−

∫ T
0

δ21,t

2σ2
dt, η2,T = eκ

A
∫ T
0 (1−δ2,t)dt)

NT∏
i=1

δ2,ti .

For the disagreement process δ1,t, we assume that under the probability measure P:

dδ1,t = −k1(δ1,t − δ̄1)dt+ ν1dZt, (6)

where δ̄1 is the constant long-time average of the disagreement (which could be zero),

k1 > 0 measures the speed of mean reversion in the disagreement, and ν1 is the volatility

of the disagreement.4

For the disagreement process δ2,t, we assume that under the probability measure P:

dδ2,t = −k2(δ2,t − δ̄2)dt+ ν2dNt, (7)

where δ̄2 is the constant long-time average, k2 > 0 is the speed of mean reversion, and ν2

4In the Appendix, we show that this δ1,t process is consistent with Kalman filtering when Type B
investors do not know the expected growth rate of Stock 1’s dividend.

7



is a constant jump size of the disagreement process.5

In this paper we focus on the market closure effect of circuit breakers, i.e., investors

cannot trade for a period of time after circuit breakers are triggered. As we show later,

stochastic disagreement is necessary for the presence of the market closure effect, because

in the absence of stochastic disagreement, investors would not trade after time zero even

when the market is always open and thus market closure would not have any impact on

asset prices. To capture the market crash risk, the fundamentals of a group of stocks

must jump down with a positive probability.6 Therefore, we assume these two features

in our model.

Hereafter, we use the notation Ei[·] to denote the expectation under the probability

measure Pi for i ∈ {A,B}.
To isolate the impact of circuit breakers on stock return correlations, we assume that,

for i ∈ {A,B}, Type i investors have constant absolute risk averse (CARA) preferences

over the terminal wealth W i
T at time T :

u(W i
T ) = − exp(−γW i

T ),

where γ > 0 is the absolute risk aversion coefficient. With CARA preferences, there is

no wealth effect and therefore in the absence of circuit breakers, it can be shown that

returns of the two stocks would be independent.

Trading in the stocks is subject to a market-wide circuit breaker rule as explained next.

Let Sj,t denote the price of Stock j = 1, 2 at time t ≤ T and the index St = S1,t + S2,t

denote the sum of the two prices (equivalent to an equally weighted index).7 Define the

circuit breaker trigger time

τ = inf{t : St ≤ h, t ∈ [0, T )},

where h is the circuit breaker threshold (hurdle). At the circuit breaker trigger time τ ,

5With the specialized dynamics of κBt , NB
t is a Hawkes process in general. See Aı̈t-Sahalia, Cacho-

Diaz, and Laeven (2015) and Aı̈t-Sahalia and Hurd (2016) for applications of Hawkes processes in finance.
6In the previous version, we show that when dividend D2,t is not a jump but a diffusion process with

continuous paths, similar to D1,t, our main results still hold such as increased correlations, volatility
contagion and magnet effects in the presence of circuit breakers. The only exception is crash contagion,
since no crash (a discrete change in a short time period) occurs in continuous changes of D1,t or D2,t.
To save space, we do not include these results in this version, but they are available from the authors.

7Using a different form of the combination of the stock prices as the index would not change our main
results, as long as the index is increasing in both stock prices.
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the market is closed until T ,8 which results in the market closure effect. In practice, the

circuit breaker threshold h is typically equal to a percentage of the previous day’s closing

level. In this paper, we set h = (1 − α)S0 for a constant α (e.g., α = 0.07 for Level 2

market closure in the Chinese stock markets and for Level 1 market closure in the U.S.

market).

3. Equilibrium without Circuit Breakers

As a benchmark case, we first solve for the equilibrium stock prices when there is no

circuit breaker in place in the market. Because the market is complete in this case, it is

convenient to solve the planner’s problem:

max
WA
T ,W

B
T

EA0 [u(WA
T ) + ξηTu(WB

T )], (8)

subject to the budget constraint WA
T +WB

T = D1,T +D2,T , where ξ is a constant depending

on the initial wealth weights of the two types of investors.

From the first order conditions, we obtain:

WA
T =

1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ), (9)

WB
T = − 1

2γ
log(

1

ξηT
) +

1

2
(D1,T +D2,T ). (10)

Given the utility function u(x) = −e−γx, the state price density under Type A investors’

beliefs is

πAt = EAt [ζu′(WA
T )] = EAt [γζe−γW

A
T ] = γζξ

1
2EAt [η

1
2
T · e

− γ
2

(D1,T+D2,T )], (11)

for some constant ζ. Therefore, the stock price in equilibrium is given by

Ŝj,t =
EAt
[
πATDj,T

]
EAt [πAT ]

= Dj,t +
EAt
[
πAT (Dj,T −Dj,t)

]
EAt [πAT ]

, j = 1, 2. (12)

8Assuming that markets can reopen after being halted for a period of time would not change the
qualitative results on contagion. Quantitatively, the results are close in very bad times, because the fear
of market closure is similar whether the closure is long or relatively short in very bad times.
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Since the two dividend processes are independent, Equation (12) can be simplified into

Ŝ1,t =
EAt [πA1,TD1,T ]

EAt [πA1,T ]
, Ŝ2,t =

EAt [πA2,TD2,T ]

EAt [πA2,T ]
, (13)

where πA1,t = EAt [η
1/2
1,T · e−

γ
2
D1,T ], πA2,t = EAt [η

1/2
2,T e

− γ
2
D2,T ]. Thus, the two prices can be

computed separately when there are no circuit breakers, which implies that stock returns

are independent.

Next, we derive the equilibrium prices in closed form for the two stocks and examine

the impact of the jump and the stochastic disagreement on the market equilibrium.

For Stock 1, the disagreement process is governed by the mean-reverting process (6).

The formula of equilibrium price Ŝ1,t can be derived analytically and is presented in the

following proposition.

PROPOSITION 1. When there are no circuit breakers, the equilibrium price of Stock

1 is:

Ŝ1,t = D1,t + µA1 (T − t)− 2

(
dA(t; γ)

dγ
+
dC(t; γ)

dγ
δ1,t

)
, (14)

where A(t; γ) and C(t; γ) are given in Appendix A.

Proposition 1 shows that, in addition to the dividend payment, disagreement also

affects the price of Stock 1. As a result, the instantaneous volatility of the stock price

Ŝ1,t is different from that of the dividend process.9

To show the importance of disagreement being stochastic, we next show what would

happen if the disagreement were constant, that is, δ1,t = δ1,0 for all t ∈ [0, T ]. In this

case, the equilibrium price would simplify to

Ŝ1,t = D1,t +
µA1 + µB1

2
(T − t)− γ

2
σ2(T − t).

Thus, the equilibrium price of Stock 1 would be determined by the average beliefs of

Type A and B investors on the expected growth rate of the dividend and the volatility of

the stock price would be the same as the volatility of its dividend. Moreover, by applying

Ito’s lemma to the wealth process WA
t =

EAt [πATW
A
T ]

EAt [πAT ]
, we can find that the equilibrium

9It can be shown that the instantaneous volatility of the equilibrium price Ŝ1,t is greater than the
volatility of the dividend process D1,t when T − t is small.

10



number of shares of Stock 1 held by Type A investors would be equal to

θ̂A1,t =
1

2
− 1

2γ

δ1,0

σ2
, (15)

which implies that the equilibrium number of shares of Stock 1 held by Type B investors

would be equal to

θ̂B1,t =
1

2
+

1

2γ

δ1,0

σ2
. (16)

Because the number of shares held by investors in the equilibrium would be constant

over time if the disagreement were constant, market closure would not have any impact

on the equilibrium price in the case of constant disagreement. This result implies that

stochastic disagreement is necessary for circuit breakers to have any impact through the

market closure channel.

For Stock 2, an analytical expression of the equilibrium price in the case of stochastic

disagreement can unlikely be obtained. However, it can be shown that if the disagreement

δ2,t = δ2 is a constant, then

EAt [πA2,TD2,T ] =EAt [η
1/2
2,T e

−γD2,T /2] ·
(
D2,t + (µ2 − κµJ)(T − t) + κA

√
δ2µJ(T − t)e−

γ
2
µJ
)
.

Then by Equation (13), we have the equilibrium price of Stock 2 as in the following

proposition.

PROPOSITION 2. When there are no circuit breakers and δ2,t = δ2 (i.e., constant

disagreement on the jump intensity), the equilibrium price of Stock 2 is:

Ŝ2,t = D2,t + µ2(T − t) + κA
√
δ2µJ(T − t)e−

γ
2
µJ . (17)

Proposition 2 shows that the equilibrium price is affected by the heterogenous beliefs

through the geometric average of beliefs of Type A and Type B investors on the jump

intensity. In addition, the instantaneous volatility (square root of instantaneous variance)

of the equilibrium price under PA is the same as that of the dividend process because

the rest of the terms in (17) are deterministic.

Let θ̂Aj,t be the optimal shares of Stock i held by Type A investors. Then dWA
t =

θ̂A1,tdŜ1,t + θ̂A2,tdŜ2,t. Applying Ito’s formula to WA
t = EAt [πATW

A
T ]/πAt and collecting the

coefficients of stochastic terms, we obtain the optimal shares holding of Stock 2 for Type
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A investors as follows.

θ̂A2,t =
1

2
− 1

2γµJ
log δ2. (18)

This shows that in the absence of circuit breakers, if the disagreement were constant,

then the equilibrium trading strategy in Stock 2 for all investors would be to buy and

hold and thus market closure would not have any impact on Stock 2 price. Therefore, as

for Stock 1, stochastic disagreement is also important for Stock 2 to capture the market

closure effect.

4. Equilibrium with Circuit Breakers

In this section, we study equilibrium prices when the circuit breaker rule is imposed in

the market. We first solve for the indirect utility functions at the circuit breaker trigger

time τ by maximizing investors’ expected utility at τ ≤ T :

max
θi1,τ ,θ

i
2,τ

Eiτ [u(W i
τ + θi1,τ (S1,T − S1,τ ) + θi2,τ (S2,T − S2,τ ))], i ∈ {A,B}, (19)

with the market clearing condition θAj,τ + θBj,τ = 1 and the terminal condition Sj,T = Dj,T ,

where θij,τ is the optimal number of shares of Stock j held by Type i investors at time τ ,

for i ∈ {A,B} and j = 1, 2.

If the circuit breaker is triggered by a continuous decline in Stock 1’s dividend, then the

after-closure prices of both stocks will reflect their respective fundamental values because

both dividends are continuous at the trigger time and investors can trade continuously.

If there is a jump in Stock 2’s dividend, then the index level corresponding to the after-

jump dividend levels may fall strictly below the circuit breaker threshold h. To resolve

this technical issue, as what is done in practice, we assume that investors can trade both

stocks one more time to reflect the after-jump dividend levels after the circuit breaker is

triggered by a jump in Stock 2’s price caused by a jump in its dividend. 10 Therefore,

at the market closure time, both stocks can reach their fundamental values regardless of

which stock triggered the circuit breaker.

Exploiting the dynamics of Dj,t and evaluating the expectation in the above optimiza-

10An alternative justification is that the jump can be viewed as an approximation of a deterministic
steep decline (less than but very close to a 90-degree drop) and during the fast decline, Stock 1 or Stock
2 can trade freely and reach their fundamental values.
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tion problems, we obtain a system of equations that determine θij,τ for i ∈ {A,B}, j = 1, 2.

Then the equilibrium prices are obtained through market clearing conditions. We sum-

marize the result in the following proposition.

PROPOSITION 3. Suppose that the market is halted at a stopping time τ < T .

(1) For Stock 1, the market clearing price at τ is given by

Sc1,τ = D1,τ + µA1 (T − τ)− γθA1,τσ2(T − τ),

where the optimal share holding of Type A investors is

θA1,τ =
− 1
k̃1

(1− ek̃1(τ−T ))δ1,τ − k1δ̄1
k̃1

(T − τ − 1−ek̃1(t−T )

k̃1
) + Iτ

Iτ + γσ2(T − τ)
, (20)

with k̃1 = k1 − ν
σ

and

Iτ = −γσ2(τ−T )+
2νσγ

k̃1

(T−τ−1− ek̃1(τ−T )

k̃1

)+
ν2γ

k̃2
1

(T−τ−2
1− ek̃1(τ−T )

k̃1

+
1− e2k̃1(τ−T )

2k̃1

).

If k̃1 = 0, the optimal share holding is simplified into:11

θA1,τ =
1

γ

(
γσ2 − γνσ(τ − T ) + 1

2
k1δ̄1(τ − T ) + ν2γ

3
(τ − T )2 − δ1,τ

−νσ(τ − T ) + ν3

3
(τ − T )2 + 2σ2

)
.

(2) For Stock 2, the market clearing price is given by

Sc2,τ := D2,τ + (µA2 − κAµJ)(T − τ) + κAµJ(T − τ)e−γθ
A
2,τµJ .

The optimal share holding θA2,τ of Type A investors at τ is specified in Appendix B.2.

As in the case of no circuit breakers, because dividend processes are independent and

investors have CARA preferences, the price of a stock only depends on its own dividend

process at the circuit breaker trigger time.

11It can be verified that as τ → T−, θA1,τ → 1
2 −

δ1,T
2γσ2 , which coincides with the optimal share holding

of Stock 1 by Type A in the case of constant disagreement.
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4.1 Circuit Breaker Trigger Time τ

The circuit breaker trigger time τ can be characterized using the dividend values. Because

the market is closed when the sum of prices falls below (or reaches) the threshold h, we

have

h ≥ Sc1,τ + Sc2,τ

= D1,τ +D2,τ +
(
µA1 − γσ2θA1,τ + (µA2 − κAµJ) + κAµJe

−γθA2,τµJ
)

(T − τ).

It follows that we may define the stopping time τ using the dividend processes as follows.

PROPOSITION 4. Let h be the threshold. Define a stopping time

τ = inf{t ≥ 0 : D1,t +D2,t ≤ D(t)},

where

D(t) = h−
(
µA1 − γσ2θA1,τ + (µA2 − κAµJ) + κAµJe

−γθA2,τµJ
)

(T − τ).

Then the circuit breaker is triggered at time τ when τ < T .

Note that D1,t + D2,t is a jump diffusion process; thus, the trigger time τ is the first

time the jump-diffusion process hits or goes below D(t).

4.2 Equilibrium Prices before τ

After obtaining the market clearing prices and the optimal portfolios at τ , we now study

the equilibrium stock prices for t < τ ∧ T . For i ∈ {A,B}, let

Gi
τ (θ

i,∗
1,τ , θ

i,∗
2,τ ) = Gi

1,τ +Gi
2,τ ,

where Gi
1,τ and Gi

2,τ are given by (B.5),(B.6), and (B.16) in Appendix B. It can be shown

that the indirect utility function of Type i ∈ {A,B} at τ can be written as follows:

V i(W i
τ , τ) = max

θi1,τ ,θ
i
2,τ

Eiτ [u(W i
τ +θi1,τ (S1,T −S1,τ )+θi2,τ (S2,T −S2,τ ))] = −e−γ(W i

τ+Giτ (θi,∗1,τ ,θ
i,∗
2,τ )).

Then we are ready to solve the planner’s problem at time t < T ∧ τ :

max
WA
T∧τ ,W

B
T∧τ

EAt [V A(WA
T∧τ , T ∧ τ) + ξηT∧τV

B(WB
T∧τ , T ∧ τ)], (21)
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subject to the wealth constraint WA
T∧τ +WB

T∧τ = S1,T∧τ + S2,T∧τ .

Similar to the case without circuit breakers, it follows from the first order conditions

and the wealth constraint that

WA
T∧τ =

1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GB
T∧τ −GA

T∧τ
2

, (22)

WB
T∧τ = − 1

2γ
log(

1

ξηT∧τ
) +

1

2
(S1,T∧τ + S2,T∧τ ) +

GA
T∧τ −GB

T∧τ
2

. (23)

In addition, the state price density under Type A investors’ beliefs is

πAt = EAt [ζ(V A(WA
T∧τ , T ∧ τ))′] = EAt [γζe−γ(WA

T∧τ+GAT∧τ )]

= γζEAt [η
1/2
T∧τ · e

− γ
2

(S1,T∧τ+S2,T∧τ+GBT∧τ+GAT∧τ )], (24)

for some constant ζ, where (V A(WA
T∧τ , T ∧ τ))′ denotes the marginal utility of wealth.

Thus, the stock price at t < T ∧ τ in equilibrium is given by

Sj,t =
EAt [πAT∧τSj,T∧τ ]

EAt [πAT∧τ ]
, j = 1, 2, (25)

with

Sj,T∧τ =

{
Dj,T , if τ ≥ T,

Scj,τ , if τ < T.
(26)

In Equation (25), because the stopping time τ depends on the circuit breaker threshold

h, the equilibrium prices S1,t and S2,t also depend on h. On the other hand, in practice,

h depends on the initial stock prices S1,0 and S2,0, because h = (1− α)(S1,0 + S2,0) (e.g.,

α = 0.07 for Chinese markets). Therefore, to obtain the equilibrium prices S1,t and S2,t,

we need to solve the following fixed point problem in S1,0 and S2,0:

Sj,0 =
EA0 [πAT∧τSj,T∧τ ]

EA0 [πAT∧τ ]
, j = 1, 2, (27)

where the right hand side is implicitly a function of the initial stock prices S1,0 and S2,0.

The following proposition guarantees the existence and uniqueness of a solution to the

above fixed point problem.

PROPOSITION 5. If the initial equilibrium index value Ŝ1,0 + Ŝ2,0 is positive in the

absence of circuit breakers, there exists a unique solution to the fixed point problem (27)

in the presence of circuit breakers.
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We can then compute the trading strategies as follows. The wealth process of Type

A investors is

WA
t =

EAt [πAT∧τW
A
T∧τ ]

EAt [πAT∧τ ]
, t < T ∧ τ . (28)

From the budget constraint we have

dWA
t = θ̄A1,tdS1,t + θ̄A2,tdS2,t,

where θ̄A1,t and θ̄A2,t are share holdings of Type A for Stock 1 and Stock 2, respectively.

For j = 1, 2, we can recover the share holdings of Stock j at t by calculating quantities

of EAt [dWA
t · dSj,t], EAt [dS1,t · dS2,t], and EAt [(dSj,t)

2] through simulations.

In the next section, we numerically compute the equilibrium prices and analyze the

impact of circuit breakers.

5. Impact of Circuit Breakers

In this section, we examine the impact of circuit breakers on the dynamics of the market.

The default parameter values for numerical analysis are set as follows, where daily growth

rates and volatilities are used.12 The algorithms used for the numerical analysis are

presented in Appendix F.

µ1 = 0.10/250, σ = 0.4, ν = 0.5,

k1 = 0.1, δ1,0 = 0, δ̄1 = 0,

µ2 = 0.10/250, µJ = −0.25, κ = 1,

k2 = 0.1, δ2,0 = 1, δ̄2 = 1, µδ = 0.5,

γ = 1, α = 0.07, T = 1.

Because δ1,0 = 0 and δ2,0 = 1, Type B investors initially correctly estimate the expected

growth rate of Dividend 1 and the jump intensity of Stock 2’s dividend. Since our main

goal is to examine the impact of circuit breakers in bad times when the market is volatile

and the crash probability of some stocks is high (e.g., the U.S. market in the week of

March 9, 2020 and the Chinese stock market in early January of 2016), we set the jump

frequency high and the jump size large, along with a high volatility of Stock 1’s dividend.

12We have analyzed the impact using a wide range of parameter valuee and have obtained the same
qualitative results.
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Because of the CARA preferences, the initial share endowment of the investors does not

affect the equilibrium. The circuit breaker is triggered when the sum of the two prices

(i.e., the index) first goes below the threshold (1−α)(S1,0 +S2,0), i.e., drops 7% from the

initial value.

One alternative to the market-wide circuit breakers is to impose a circuit breaker sep-

arately on each stock (instead of on an index). With this separate circuit breaker on each

stock, if a circuit breaker for a stock is triggered, only the trading in the corresponding

stock is halted. For example, when the circuit breaker of Stock 1 is triggered, only the

trading of Stock 1 is halted, but trading in Stock 2 is unaffected. Obviously, with separate

circuit breakers, equilibrium prices remain independent, in sharp contrast to the case of

market-wide circuit breakers. Let Ssepj,t , j = 1, 2 denote the equilibrium prices of Stock j

in this benchmark. We compare the impact of circuit breakers on the stock prices when

they are on an index and when they are on individual stocks.

5.1 Equilibrium Prices

By Propositions 1 and 2, we obtain the initial equilibrium prices Ŝ1,0 = 0.8725, Ŝ2,0 =

0.9703 in the absence of circuit breakers. When there are separate circuit breakers on

individual stocks, the equilibrium prices are Ssep1,0 = 0.8719 and Ssep2,0 = 0.9577, which

are respectively lower than those without circuit breakers. In the presence of market-

wide circuit breakers, we obtain the equilibrium prices S1,0 = 0.8652 and S2,0 = 0.9418.

The prices of both stocks with separate circuit breakers are lower than those without

circuit breakers, because market closure prevents risk sharing after the circuit breakers

are triggered. In addition, with circuit breakers on an index, the prices are even lower.

As we show later, this is because of the contagion effect of the circuit breakers on indices.

5.2 Crash Contagion

Because the circuit breaker based on a stock index is triggered when the index reaches a

threshold, a crash in a group of stocks (e.g., from a downward jump in their dividends)

may trigger the circuit breaker and cause the entire market to be closed down. As a

result, the prices of otherwise independent stocks may also jump down because of the

sudden market-wide closure. We refer this pattern of cross-stock serial crashes as crash

contagion.

Let C denote the event that a crash in Stock 2’s price triggers the circuit breakers at

τ and ∆t be a small time interval. In Panel A of Figure 1, we plot the distribution of
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Stock 1’s price change between τ −∆t and τ without circuit breakers, with or without a

change in Stock 2’s price (green line). In Figure 1, we plot the unconditional distribution

of Stock 1’s price change between τ and τ−∆t (blue line), the corresponding distribution

conditional on the event C (red dashed line), and the conditional distribution of Stock

1’s price change between τ and τ− (red line). The blue line in Figure 1 shows that

without circuit breakers, the price change of Stock 1 between τ and τ − ∆t, with or

without a crash in Stock 2’s price, is normally distributed. This implies that without

circuit breakers, there is no contagion across stocks. In contrast, as the red dashed line in

Figure 1 shows, in the presence of circuit breakers, after a crash of Stock 2 that triggers

a circuit breaker, the distribution of Stock 1’s price change between τ and τ −∆t shifts

leftward significantly compared to the unconditional distribution. This distribution shift

indicates crash contagion from Stock 2 to Stock 1 in the presence of circuit breakers.

Figure 1 indicates that on average a crash of Stock 2 ’s price causes Stock 1 price to

drop, suggesting a positive correlation between the returns of the two stocks when the

market crashes. Recall that in the absence of circuit breakers, Stock 1 price is continuous

and thus Stock 1’s price change between τ and τ− is zero. The red line of Figure 1

implies that in the presence of circuit breakers, not only there is contagion but also a

crash in Stock 2’s price can cause a crash (jumping down) in Stock 1’s price, i.e., circuit

breakers can result in a crash contagion. This discontinuity in Stock 1’s price is due to the

discontinuous change in the value of the stock due to the sudden market closure. Stock

1’s price jumps down because the market closure reduces risk sharing and thus increases

the riskiness of the stock.

Our findings are consistent with what happened in March 2020 in the U.S. stock

market. The circuit breaker of the U.S. market was triggered four times in March 2020.

The first one occurred at 9:34:13 am on March 9th, less than five minutes after the

market opened. The second occurred at 9:35:43 on March 12th. Four days later, the

market lasted only one second on March 16th before the circuit breaker was triggered.

The fourth time occurred at 12:56:17 pm on March 18th. To illustrate that our results

are consistent with what happened around the circuit breaker trigger time, we use high-

frequency prices of the components of the S&P 500 index during the 10 minutes before

the circuit breaker was triggered on March 18th, 2020 and sort components by their total

dollar trading volumes. Simple regression of the return of the top 25%–50% of stocks

inside the S&P 500 index on the lagged return of the top 25% of stocks suggests that, in

the market crash of March 18th, 2020, the crash of the top 25%–50% of stocks followed

that of the top 25% of stocks. Figure 2 depicts how returns of S&P 500 component stocks
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Figure 1. Distribution of changes in Stock 1’s price when the circuit breaker is triggered by a jump in Stock 2’s
price. In the presence of a circuit breaker, the distribution is skewed negatively. Results for two methods of measuring the
changes are presented. Meanwhile, in the absence of circuit breakers the price changes follows a normal distribution.

moved during the 10 minute period right before the market was halted.

Let Rtt and Rbt be the time t returns of the top 25% of stocks and the top 25%–50%

of stocks, respectively. We obtain the regression result as follows.

Rbt =− 0.01 + 0.5Rtt−∆t + 0.1Rtt + εt,

t-stat : (−9) (10.8) (2.2)

where ∆t equals one second. The regression result indicates that those stocks with

relatively low trading volumes followed the moves of those with high trading volumes.

While this does not prove the causal relationship, it suggests a pattern that is consistent

with the cross-stock contagion our model predicts.

A similar illustration is shown in Figure 3 for stocks in the China Securities Index

(CSI) 300 index on January 4th, 2016 when the Chinese stock market crashed. Simple

regression of the return of the top 25%-50% of stocks inside the CSI 300 index on the

lagged return of the top 25% of stocks yields

Rbt =10−4 + 0.78Rtt−∆t + 0.25Rtt + εt,

t-stat : (0.67) (2.85) (0.92)

19



-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002
The U.S.Market

12:46:17 12:56:17Mar 18,2020

top 25% (Rt)
top 25%-50% (Rb)

Figure 2. Evidence of contagion in real markets: the United States.

where ∆t equals 3 seconds. This result suggests that, in the market crash of January 4th,

2016, the crash of the top 25%–50% of stocks followed that of the top 25% of stocks.

5.3 Increased Correlations

With circuit breakers based on indices, a discrete jump (crash) in a stock is not necessary

to adversely affect other otherwise independent stocks. Intuitively, even after a small

decline in the price of a stock, the index gets closer to the circuit breaker threshold and

thus the market is more likely to be closed early, which may lower the prices of other

otherwise independent stocks, which in turn makes the index even closer to the circuit

breaker threshold, entering into a vicious circle. This contagion magnitude is typically

smaller than that caused by a crash in a stock in normal times, but can become much

more significant and create strong correlations when the circuit breaker is close to being

triggered because of the magnified vicious circle effect. We next show that a gradual

change in the price of a stock can indeed affect the price of another stock and can also

cause high correlations among otherwise independent stocks when the index gets close to

the circuit breaker threshold.

Consistent with our intuition, Figure 4 shows that the correlation between the two

prices with circuit breakers increases significantly as the index gets close to the thresh-
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Figure 3. Evidence of contagion in real markets: China.

old.13 When the index is far from the threshold and thus a market closure is unlikely,

the correlation becomes close to zero, because the correlation without circuit breakers is

zero. In addition, when the potential market closure duration is large (T − t is large),

the impact of the circuit breakers on the correlation is even greater, because the fear of

a market closure is stronger when the potential market closure duration is longer. For

example, conditional on the same distance of 0.02 from the threshold, if it is later in the

day at t = 0.75, the correlation is 0.2, but the correlation increases to about 0.55 if it is

early in the day at t = 0.14

13In the figure, “distance from threshold” is defined as the value of the index in exceed of the threshold.
Because the equilibrium index level is determined jointly by the dividend levels of the two stocks, the
way to vary the distance is not unique. In all the figures in this paper that plot against the distance to
threshold we fix D2,t and vary D1,t. We also used alternative ways such as fixing D1,t and varying D2,t

and find similar results.
14So far the dividend processes are assumed to be uncorrelated and we show that a strong correlation

of the stock prices can emerge due to circuit breakers. One concern may be that if the dividend processes
are already correlated, then the additional correlation caused by the circuit breakers may be small and
thus the effect of circuit breakers in increasing correlation may be small in practice. To address this
concern, in an earlier version of the paper, we show that even when the dividends are correlated, the
presence of circuit breakers can significantly increase the correlation of stock prices further. In addition,
the presence of circuit breakers can even make negatively correlated stocks in the absence of circuit
breakers become positively correlated. This reversal is because as the index gets close to the threshold,
the common fear for market closure offsets the effect of the negatively correlated dividends and as a
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Figure 4. Instantaneous correlation.

5.4 Volatility Contagion and Volatility Amplification

Next, we show that in addition to crash contagion, circuit breakers can also cause volatility

contagion among otherwise independent stocks, i.e., an increase in the volatility of one

stock can cause an increase in that of another. Figure 5 plots the instantaneous volatility

of Stock 2 against that of Stock 1 for t = 0 and t = 0.25 when the index level is 0.01

above the circuit breaker threshold as we change the volatility of Stock 1’s dividend.

Figure 5 indicates that, indeed, a higher volatility of Stock 1’s dividend can cause a

higher volatility of Stock 2. Intuitively, the stock price contagion causes the volatility

contagion. As explained above, after some stocks fall in prices, the index gets closer to

the circuit breaker threshold, other stock prices also fall due to the fear of the more likely

market closure, which in turn drives the index even closer to the threshold, and so on.

This vicious cycle implies that as the price change of one stock becomes more volatile,

so does the price change of the other, resulting in volatility contagion, especially when

the index is close to the circuit breaker threshold. In addition, when the time to horizon

result the correlation turns positive. These results are not presented in the current version to save space,
but available from the authors.
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is longer (t = 0), the effect of the circuit breakers is greater, and therefore the degree of

contagion is larger as measured by the sensitivity of Stock 2’s volatility change to Stock

1’s volatility change (the red line slope).

One of the regulatory goals of the circuit breaker is to reduce market volatility in

bad times. Because of the volatility contagion, we conjecture that contrary to regulators’

intention, circuit breakers may increase the market volatility in bad times. Figure 6

plots the volatility of the index with circuit breakers against the index’s distance from

the circuit breaker threshold at two different time points t = 0 and t = 0.5. Figure 6

suggests that, indeed, contrary to the regulatory goal, circuit breakers can amplify the

market volatility. This is because the vicious cycle effect described above can increase

the sensitivity of stocks’ prices to dividend shocks.
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Figure 5. This figure shows that volatilities of Stocks 1 and 2 are correlated in the presence of circuit breakers.

5.5 Acceleration of Market Decline: The Magnet Effect

Circuit breakers are implemented to protect the market from a fast decline. Contrary

to this intention, Chen, Petukhov, and Wang (2017) show in a single-stock setting that

circuit breakers can accelerate a stock price decline compared to the case without circuit

breakers. This acceleration is what is called the “magnet effect” by Chen, Petukhov,
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Figure 6. This figure plot the ratios of volatility with circuit breakers to that without circuit breakers against the
distance from the circuit breaker threshold.

and Wang (2017). However, it is not clear how the presence of multiple stocks affects

this magnet effect. Our following results suggest that, in the presence of circuit breakers

on stock indices, the probability of falling to the index threshold compared to the case

without circuit breakers is also increased, so the magnet effect found by Chen, Petukhov,

and Wang (2017) is robust to a multiple-stock setting. In addition, the driving force

of the magnet effect in our setting is different from that in Chen, Petukhov, and Wang

(2017).

Figure 7 shows the probabilities of reaching the circuit breaker index threshold in a

given time interval with circuit breakers on the index (red line), with separate circuit

breakers on individual stocks (black dashed line), and without circuit breakers (blue

line). It suggests that the probability of falling to the index threshold when there is a

circuit breaker on the index is higher than that without any circuit breakers, which is

in turn higher than that when circuit breakers are on individual stocks. This is because

with circuit breakers on indices, when one stock goes down, the distance to the circuit
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breaker threshold is shorter and the likelihood of an early market closure is greater.

As a result, other stock prices tend to go down, which in turn drags the index further

downward, resulting in a downward accelerating vicious circle, contrary to regulators’

intention. Because of the contagion effect across stocks, the magnet effect in a model

with multiple stocks like ours can be stronger than that found in the single-stock setting

of Chen, Petukhov, and Wang (2017), ceteris paribus. In addition, when the potential

market closure duration is longer (e.g., at t = 0), this magnet effect is even stronger.

The main driving force for the magnet effect in Chen, Petukhov, and Wang (2017) is

the fear that one has to liquidate a levered position at the market closure time because

after market closure, leverage is prohibited by the solvency requirement. In contrast,

in this paper there is no change in the leverage level allowed before and after a market

closure. Figure 8 shows that when a separate circuit breaker is imposed on Stock 1,

the probability of reaching the circuit breaker threshold is almost the same as that in

the absence of a circuit breaker. Therefore, without the leverage effect and without the

contagion effect of circuit breakers on the index, the magnet effect is almost zero. This

suggests that different from Chen, Petukhov, and Wang (2017), the driving force behind

the magnet effect in our setting is the contagion effect of circuit breakers, not the leverage

constraint effect Chen, Petukhov, and Wang (2017).
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Figure 7. This figure shows the probability that prices will reach the threshold with or without a circuit breaker.
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Figure 8. This figure shows the probability that prices will reach the threshold with or without a circuit breaker for
Stock 1 with a separate circuit breaker.

6. Conclusion

Circuit breakers based on indices are commonly imposed in financial markets to prevent

market crashes in bad times and reduce market volatility. We develop a continuous-time

equilibrium model with multiple stocks to study how circuit breakers affect joint stock

price dynamics and cross-stock contagion. Contrary to regulatory goals, we show that

in bad times, circuit breakers can cause crash contagion, volatility contagion, greater

volatilities, and high correlations among otherwise independent stocks. Our analysis

suggests that international market plunges triggered by the COVID-19 pandemic may

have been exacerbated by circuit breakers rules because of the contagion effect of these

circuit breakers. Market-wide circuit breakers may be a source of financial contagion

and a channel through which idiosyncratic risks become systemic risks, especially in bad

times. An alternative circuit breaker approach based on individual stock returns instead

of indices would alleviate such problems.
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Appendix

A Price of Stock 1: Without Circuit Breakers

We assume that the disagreement process δ1,t is stochastic and follows Equation (6).

When there are no circuit breakers, the equilibrium price of Stock 1 is independent of

Stock 2 because of independent dividend processes. The price of Stock 1 can be obtained

in closed-form as follows.

We first evaluate EAt [πA1,T ]. Ignoring constants, we need to calculate

EAt [η
1/2
1,T e

− γ
2
D1,T ] = EAt [eY1,T ] · f(t),

where f(t) is a deterministic function and,

Y1,T =

∫ T

0

(
δs
2σ
− γσ

2
)dZs +

∫ T

0

(− δ2
s

4σ2
)ds.

To simplify notation, in the rest of Appendix A, we use δt, k, and δ̄ to denote δ1,t, k1,

and δ̄1 respectively.

Conjecture F (t, y, δ, δ2) = eA(t)+B(t)y+C(t)δ+
H(t)
2
δ2 = EA[eYT |Yt = y, δt = δ], with

A(T ) = C(T ) = H(T ) = 0 and B(T ) = 1. Substituting the conjecture into the mo-

ment generating function of the process (Yt, δt) and collecting the coefficients of y, δ, δ2

and constants, we obtain four ordinary different equations:

A′(t) +
1

8
γ2σ2B(t)2 + kδ̄C(t) +

ν2

2
(C(t)2 +H(t))− γσν

2
B(t)C(t) = 0,

B′(t) = 0,

C ′(t)− γ

4
B(t)2 + kδ̄H(t)− kC(t) + C(t)H(t)ν2 +

ν

2σ
B(t)C(t)− γσν

2
B(t)H(t) = 0,

H ′(t)

2
− 1

4σ2
B(t) +

B(t)2

8σ2
− kH(t) +

ν2

2
H(t)2 +

νB(t)H(t)

2σ
= 0.
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The solution of the ODE system is obtained as follows.

B(t) = 1,

H(t) =
e(D+−D−)v2(t−T ) − 1

e(D+−D−)v2(t−T )D− −D+
D+D−,

C(t) =

∫ T

t

e
∫ s
t f(x)dsg(s)ds =

1

∆(D− −D+e2∆(T−t))

·
(
−γ

4
((D+ +D−)e∆(T−t) −D+e2∆(T−t) −D−)− (kδ̄ − σνγ

2
)D+D−(e∆(T−t) − 1)2

)
,

A(t) =

∫ t

T

(−1

8
γ2σ2 − kδ̄C(s)− v2

2
(C(s)2 +H(s)) +

γ

2
vσC(s))ds,

where

∆ =

√
k2 +

v2

2σ2
− vk

σ
,

D± =
k − v

2σ
±
√
k2 + v2

2σ2 − vk
σ

v2
,

f(t) =− k + v2H(t) +
v

2σ
,

g(t) =− γ

4
+ kδ̄H(t)− γσv

2
H(t).

Then

EAt [eYT ] = F (t, y, δ, δ2; γ) = eA(t)+B(t)y+C(t)δ+
H(t)
2
δ2 .

Next, we consider the first derivative of F with respect to γ to obtain EAt [eYTZT ]. We

define

A(t; γ) = A(t), C(t; γ) = C(t).

Note that

dB(t)

dγ
=
dH(t)

dγ
= 0,

dC(t; γ)

dγ
=

∫ T

t

e
∫ s
t f(x)dx[−1

4
− σv

2
H(s)]ds,

dA(t; γ)

dγ
=

∫ t

T

(
−σ2γ

4
− kδ̄ dC(s; γ)

dγ
− v2C(s; γ)

dC(s; γ)

dγ
+
vσ

2
C(s; γ) +

γvσ

2

dC(s; γ)

dγ
)ds.

Hence

EAt [eYTZT ] = − 2

σ

d

dγ
EAt [eYT ] = − 2

σ

d

dγ
F (t, y, δ, δ2; γ).
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Finally, the stock price in the equilibrium is given by

Ŝ1,t =
EAt [πA1,TD1,T ]

EAt [πA1,T ]
=

EAt [πA1,TD1,T ]

F
= D1,0 + µA1 T − 2

dF
dγ

F

= D0 + µAT − 2(
dA(t; γ)

dγ
+
dy

dγ
+
dC(t; γ)

dγ
δt)

= D1,0 + µA1 T − 2(
dA(t; γ)

dγ
− σ

2
Zt +

dC(t; γ)

dγ
δt).

The last equality above holds because Yt =
∫ t

0
( δs

2σ
− γσ

2
)dZs+

∫ t
0
(− δ2s

4σ2 )ds and Yt = y yield

dy/dγ = −1/2σZt. By D1,t = D1,0 + µA1 t+ σZt (µA1 is constant), we obtain

Ŝ1,t =D1,t + µA1 (T − t)− 2(
dA(t; γ)

dγ
+
dC(t; γ)

dγ
δt). (A.1)

In case δt is constant, i.e., v = k = 0 and δt ≡ δ0, we find that dA(t)/dγ = −σ2γ/4(t−
T ) and dC(t; γ)/dγ = −1/4(T − t). Thus, Ŝ1,t = D1,t+µA1 (T − t)+(δ0/2−σ2γ/2)(T − t).
This is the equilibrium price of Stock 1 in the case of constant disagreement.

Since H(t) → 0 as t → T , we see that dC(t; γ)/dγ is negative when T − t is small.

Thus, it follows (A.1) that the instantaneous volatility of the stock price σŜ = σ−2dC(t)
dγ

ν

is greater than the dividend volatility σ when T − t is small, given ν is positive.

B Market Clearing Prices

B.1 Stock 1: Stochastic Disagreement

In the presence of circuit breakers, we cannot obtain the equilibrium price of Stock 1

directly. In this section, we derive the market clearing price of Stock 1 when a circuit

breaker is triggered and the market is closed early. Because the two dividend processes

are independent and we assume no leverage constraints when the market is halted, the

market clearing prices for the two stocks are independent of each other.

The disagreement δ1,t is stochastic following (6), therefore µB1,t = δ1,t+µA1 is stochastic

as well. In the presence of a circuit breaker, we solve for the market clearing price when

the market is halted. To do so, we solve the utility maximization problem

max
θA1,τ

EAτ [−e−γWA
T ],
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subject to WA
T = θA1,τ (D1,T − S1,τ ) +WA

τ , where WA
t is the wealth of Type A investors at

time t.

Using the dynamics D1,T = D1,τ + µA1 (T − τ) + σ(ZT − Zτ ), we obtain the optimal

portfolio of agent A as follows.

θA1,τ =
D1,τ − S2,τ + µA1 (T − τ)

γσ2(T − τ)
. (B.1)

Next, we study the utility maximization problem of agent B:

max
θB1,τ

EBτ [−e−γ(WB
τ +θB1,τ (D1,T−S1,τ ))].

We first prove the following lemma.

Lemma B1. Suppose θ is a constant, then

EBt [e−γθD1,T ] = eA(t,θ)+B(t,θ)D1,t+C(t,θ)δ1,t ,

where

A(t, θ) = γθµA1 (t− T )− σ2

2
γ2θ2(t− T ) +

1

k̃1

(−γθk1δ̄1 + νσγ2θ2)(T − t− 1− ek̃1(t−T )

k̃1

)

+
ν2γ2θ2

2k̃2
1

(T − t− 2
1− ek̃1(t−T )

k̃1

+
1− e2k̃1(t−T )

2k̃1

),

B(t, θ) = −γθ,

C(t, θ) =
−γθ
k̃1

(1− ek̃1(t−T )),

with k̃1 = k1 − ν/σ. In particular, if k̃1 = 0, then

A(t, θ) = γθµA1 (t− T )− σ2

2
γ2θ2(t− T ) +

1

2
(−γθk1δ̄1 + γ2θ2νσ)(t− T )2 − ν2γ2θ2

6
(t− T )3,

B(t, θ) = −γθ,

C(t, θ) = γθ(t− T ).

Lemma B1 can be proved by using the moment generating function of process D1,t and

δt and solving an ODE system. Detailed deviations are omitted here.
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By the lemma,

EBτ [−e−γ(WB
τ +θB1,τ (D1,T−S1,τ ))] = −e−γWB

τ eA(t,θB1,τ )+C(t,θB1,τ )δ1,τ e−γθ
B
1,τ (D1,τ−S1,τ ).

Then the FOC with respect to θB1,τ yields that

γS1,τ − γD1,τ +
∂A(τ, θB1,τ )

∂θB1,τ
+
∂C(τ, θB1,τ )

∂θB1,τ
δ1,τ = 0

or

S1,τ −D1,τ + µA1 (τ − T )− 1

k̃1

(1− ek̃1(τ−T ))δ1,τ − δ̄1
k1

k̃1

(T − τ − 1− ek̃1(τ−T )

k̃1

) + θB1,τI(τ) = 0,

(B.2)

where

I(t) = −γσ2(t−T )+
2νσγ

k̃1

(T−t−1− ek̃1(t−T )

k̃1

)+
ν2γ

k̃2
1

(T−t−2
1− ek̃1(t−T )

k̃1

+
1− e2k̃1(t−T )

2k̃1

).

It follows (B.1) that

S1,τ = D1,τ + µA1 (T − τ)− θA1,τγσ2(T − τ). (B.3)

Together with (B.2) and the market clearing condition θA1,τ + θB1,τ = 1, we obtain the

optimal share holding of Type A for Stock 1 at the time of market closure.

θA,∗1,τ =
− 1
k̃1

(1− ek̃1(τ−T ))δ1,τ − δ̄1
k1
k̃1

(T − t− 1−ek̃1(τ−T )

k̃1
) + I(τ)

I(τ) + γσ2(T − t)
. (B.4)

Therefore, we find the market clearing price S1,τ by (B.3) where θA1,τ = θA,∗1,τ given by

(B.4).

In particular, in the case k̃1 = 0 (or k1 = ν/σ),

θA,∗1,τ =
1

γ

(
γσ2 − γνσ(τ − T ) + 1

2
k1δ̄1(τ − T ) + ν2γ

3
(τ − T )2 − δ1,τ

−νσ(τ − T ) + ν2

3
(τ − T )2 + 2σ2

)
,
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and substituting it into (B.1), it follows that

S1,τ = D1,τ + µA1 (T − τ)

+
γσ2 − γνσ(τ − T ) + 1

2
kδ̄(τ − T ) + ν2γ

3
(τ − T )2 − δ1,τ

−νσ(τ − T ) + ν2

3
(τ − T )2 + 2σ2

σ2(τ − T ).

Finally, it is worthy mentioning that S1,τ may not be larger than Ŝ1,τ (the equilibrium

price in the absence of circuit breakers at time τ). In fact, for a relative large positive

δ0 and small ν (say, less than half of the volatility σ), the coefficient of δt in (B.3) can

always be less than the coefficient of δt in the formula of Ŝ1,τ . Thus, along with a small

γ, we can always have S1,τ < Ŝ1,τ . Under these conditions, the market clearing price with

circuit breakers can always be smaller than the price without circuit breakers at time τ .

Denote the market clearing price of Stock 1 by Sc1,τ . Then by (B.3),

Sc1,τ = D1,τ + µA1 (T − τ)− γθA,∗1,τ σ
2(T − τ).

In addition, we obtain the value function of Type B investors:

V B
1 (τ,WB

τ ) = max
θB1,τ

EBτ [e−γ(WB
τ +θB1,τ (D1,T−S1,τ ))] = e−γW

B
τ e−γG

B
1,τ ,

where −γGB
1,τ = −γθB1,τ (D1,τ − S2,τ ) + A(τ, θB,∗1,τ ) + C(τ, θB,∗1,τ )δ1,τ , or

GB
1,τ = θB,∗1,τ (D1,τ − S2,τ )−

1

γ
A(τ, θB,∗1,τ )− 1

γ
C(τ, θB,∗1,τ )δ1,τ , (B.5)

and the value function of Type A investors:

V A
1 (τ,WA

τ ) = max
θA1,τ

EAτ [e−γ(WA
τ +θA1τ (D1,T−S1,τ ))] = e−γW

A
τ e−γG

A
1,τ ,

where−γGA
1,τ = −γθA,∗1,τ (D1,τ−S1,τ )−γθA,∗1,τ µ

A
1 (T−τ)+

γ2(θA,∗1,τ )2

2
σ2(T−τ) = −γ2(θA,∗1,τ )2

2
σ2(T−

τ), or

GA
1,τ = θA,∗1,τ (D1,τ − S1,τ ) + θA,∗1,τ µ

A
1 (T − τ)−

γ(θA,∗1,τ )2

2
σ2(T − τ) =

γ(θA,∗1,τ )2

2
σ2(T − τ).

(B.6)
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B.2 Stock 2: Stochastic Disagreement on Jump Intensity

Note that for Stock 2 there is disagreement on the jump intensity of dividend process

D2,t, which follows

dD2,t = (µi2 − λitµJ)dt+ µJdN
i
2,t, i = A,B. (B.7)

In this Appendix, we derive the market clearing price Sc2,τ of Stock 2 when a circuit

breaker is triggered.

Recall that δ2,t = κBt /κ
A satisfies a mean-reverting process as follows.

dδ2,t = −k2(δ2,t − δ̄2)dt+ µδdNt. (B.8)

Suppose that the circuit breaker is triggered at τ < T . The individual optimization

problem of Type i ∈ {A,B} investors at τ is:

V i
2 (W i

τ , τ) = max
θi2,τ

Eiτ [− exp(−γ(W i
τ + θi2,τ (D2,T − S2,τ )))], (B.9)

subject to the market clearing condition θA2,τ + θB2,τ = 1, where W i
τ is the wealth owned

by Type i investors at time τ . Note that

Eiτ [u(W i
τ + θij,τ (D2,T − S2,τ ))] = −e−γW i

τ eγθ
i
2,τS2,τEiτ [e−γθ

i
2,τD2,T ].

For Type A agents we have

Eiτ [e−γθ
i
2,τD2,T ] = exp{−γθA2,τD2,τ + (τ − T )((µA2 − κAµJ)γθA2,τ − κA(e−γθ

A
2,τµJ − 1))};

(B.10)

and for Type B agents we have

EBτ [e−γθ
i
2,τD2,T ] = exp{−γθB2,τD2,τ + ϑτg(τ ;−γθB2,τ ) +

∫ T

τ

(−γθ2,τ (µ
A
2 − κAµJ)) + k2δ̄g(s;−γθB2,τ )ds}

:= exp(−γMB
2,τ ), (B.11)

where function g(t;α) satisfies

g′(t;α) + κA(eαµJ+µδg(t) − 1)− k2g(t;α) = 0, (B.12)
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with g(T ) = 0.

To solve the optimization problem (B.9), we find the first order conditions with respect

to θi2,τ for j ∈ {1, 2}, i ∈ {A,B} as follows.

D2,τ − S2,τ + (T − τ)(µA2 − κAµJ + κAµJe
−γθA2,τµJ ) = 0, (B.13)

D2,τ − S2,τ + δ2
∂g(τ ;α)

∂α
|α=−γθB2,τ +

∫ T

τ

(µA2 − κAµJ) + k2δ̄
∂g(s;α)

∂α
|α=−γθB2,τ )ds = 0,

(B.14)

where gα(t) := ∂g(t;α)
∂α

satisfies an ODE as follows.

g′α(t) + κAeαµJ+µδg(t)(µJ + µδgα(t))− k2gα(t) = 0, (B.15)

with gα(T ) = 0.

Along with the market clearing condition: θA2,τ + θB2,τ = 1, we can solve the optimal

share holdings θA2,τ = θA,∗2,τ , θB2,τ = θB,∗2,τ and the market clearing price S2,τ = Sc2,τ from

(B.13) and (B.14). No explict solutions like for Stock 1, we rely on numerical solutions

in practice.

By (B.13), the market clearing price of Stock 2 can be expressed by θA,∗2,τ :

Sc2,τ = D2,τ + (µA2 − κAµJ)(T − τ) + κAµJ(T − τ)e−γθ
A,∗
2,τ µJ .

Define

GA
2,τ = θA2,τµ2(T − τ) + θi2,τ (D2,τ − Sc2,τ )−

κA

γ
(T − τ)(e−γθ

A,∗
2,τ µJ − 1), (B.16)

GB
2,τ = MB

2,τ − θ
B,∗
2,τ S

c
2,τ ,

where MB
2,τ is defined in (B.11). Then by (B.10) and (B.11), the value function of Type

i investors at τ can be expressed in terms of W i
2,τ and Gi

2,τ as follows.

V i
2 (W i

τ , τ) = −e−γW i
τ e−γG

i
2,τ , i ∈ {A,B}.

By the expressions of GA
2,τ and GB

2,τ , it is useful to notice that Sc2,τ +GA
2,τ +GB

2,τ does

not depend on Sc2,τ directly. The quantity depends on the optimal share holdings at τ :

θA,∗2,τ and θB,∗2,τ .
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C Learning and Heterogeneous Beliefs

Suppose

dDt = µtdt+ σdZ̄t.

The dividend Dt is observable but the growth rate µt is not. Agents A and B infer the

value of µt through the information from the dividend. Assume that

dµt = −k(µt − µ̄)dt+ σµdZ̄t,

and µ0 ∼ N(a0, b0), a normal distribution with mean a0 and standard deviation b0.

Agent i ∈ {A,B} believes k = ki, µ̄ = µ̄i, σµ = σiµ, a0 = ai0, b0 = bi0. Both of them learn

µt through {Ds}ts=0. Let µAt = EA[µt|{Ds}ts=0] and µBt = EB[µt|{Ds}ts=0]. Then following

the standard filtering results, we have (under the assumption: µt|{Ds}ts=0 ∼ N(µ̂, ν))

dµAt = −kA(µAt − µ̄A)dt+ νAdZA
t ,

dµBt = −kB(µBt − µ̄B)dt+ νBdZB
t ,

where dZi
t = 1

σ
(dDt − µitdt), i = A,B. Then

dDt = µAt dt+ σdZA
t , dDt = µBt dt+ σdZB

t .

Therefore, ZB
t + δt

σt
t is equal to ZA

t almost surely, where δt = µBt − µAt . In other words,

ZB
t + δt

σt
t is a standard Brownian motion under agent A’s probability measure PA.

Thus,

dµBt = −kB(µBt − µ̄B)dt− νB

σ
δtdt+ νBdZA

t .

So we can obtain the general dynamics of the stochastic disagreement δt under learn-

ing. To validate the setting adopted in this paper, we let νA = 0, kA = 0, and µAt = µA.

That is, we assume that Type A investors take the long-time mean of the growth rate as

the estimation and impose no learning. Then it follows that

dδt = d(µBt − µA) = −(kB +
νB

σ
)δtdt− kB(µA − µ̄B)dt+ νBdZA

t

= −kBδtdt+ kB(µ̄B − µA)dt+ νBdZB
t .

Further, let kB + νB/σ = k, νB = ν and (µ̄B − µA)/k = δ̄/κB; we have reached the

mean-reverting disagreement process assumed in the paper.
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D The Fixed Point Problem

We prove the existence and uniqueness of a solution to the fixed point problem. First

of all, based on the explicit expressions of the prices, we restrict the model parameters

and the initial conditions (e.g., D1,0, D2,0) and assume that both Ŝj,0 (the price without

circuit breakers) and Scj,0 (the market clearing price) are positive for each j = 1, 2.

Recall that S1,0, S2,0 impact valuation of the expectations through the sum S1,0 +S2,0

only. When the initial stock prices are S1,0 and S2,0, the threshold h is (S1,0 +S2,0)(1−α).

So, we define

fj(S1,0 + S2,0) =
EA0 [πAT∧τSj,T∧τ ]

πA0
, j = 1, 2.

and define a function f : R → R2 such that f(S1,0 + S2,0) = (f1(S1,0 + S2,0), f2(S1,0 +

S2,0))>, where > denotes the transpose of a vector. Then the fixed point problem is

expressed as follows.

(S1,0, S2,0)> = f(S1,0 + S2,0).

Define g(x) = f1(x) + f2(x) − x, where x ∈ R. When the threshold is zero, the

circuit breaker is hardly triggered. Thus the equilibrium prices are close to the prices

Ŝ0,1 and Ŝ2,0 respectively in the absence of circuit breakers. Given positive Ŝ0,1 and Ŝ2,0,

we can obtain (specifically, for a sufficiently small volatility of D1,t and jump intensity

of D2,t): g(0) = f1(0) + f2(0) > 0. On the other hand, if the threshold is the sum of the

market clearing prices Sc1,0 +Sc2,0, the market is stopped immediately and the equilibrium

prices must be the market clearing prices exactly. Thus, g(
Sc1,0+Sc2,0

1−α ) = f1(
Sc1,0+Sc2,0

1−α ) +

f2(
Sc1,0+Sc2,0

1−α ) − Sc1,0+Sc2,0
1−α = Sc1,0 + Sc2,0 −

Sc1,0+Sc2,0
1−α < 0. It can be shown that g(x) is a

continuous function. Hence, there exists x∗ ∈ (0,
Sc1,0+Sc2,0

1−α ), such that g(x∗) = 0. Thus

f1(x∗) + f2(x∗) = x∗.

Now define (S∗1,0, S
∗
2,0)> = f(x∗). Then x∗ = f1(x∗) + f2(x∗) = S∗1,0 + S∗2,0 and

(S∗1,0, S
∗
2,0)> = f(x∗) = f(S∗1,0 + S∗2,0).

Thus (S∗1,0, S
∗
2,0)> ∈ R2 is a solution to the fixed problem. The existence is proved.

Next, we show that the solution is unique. To do so, it is sufficient to show that g(x) is

monotonic. For the sake of notional simplicity, we ignore super-script “A” of expectations

and πAt below.

Let D0 = D1,0 +D2,0. Given an exogenous threshold h and initial dividend sum value

D0, let Sh,D0
t = Sc1,t + Sc2,t, where Sc1,t and Sc2,t are the market clearing prices; let τ(h,D0)
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denote the stopping time; and let πh,D0
t be the state price density, i.e.

πh,D0
t = (ηt)

1/2e−
γ
2
S
h,D0
t · e

GAt +GBt
2 .

We redefine

g(x) = g(x;D0) =
E[πτ(h,D0)∧TS

h,D0

τ(h,D0)∧T ]

E[πAτ(h,D0)∧T ]
− x,

where h = x(1− α). Observe that τ(h,D0) = τ(0, D0 − h) because the stopping time is

determined byDt and δt only. Then the market clearing (sum) price Sh,D0

τ(h,D0) = S0,D0−h
τ(0,D0−h)+

h by the expressions of Scj,τ , j = 1, 2. In addition, by the definition of Gi
τ , we see that

Gi
τ(h,D0) = Gi

τ(0,D0−h), i = A,B. Therefore

πh,D0

τ(h,D0) = e−
γ
2
h · π0,D0−h

τ(0,D0−h). (D.1)

Thus,

g(x;D0) =
E[πh,D0

τ(h,D0)∧T · (S
h,D0

τ(h,D0)∧T − x)]

E[πh,D0

τ(h,D0)∧T ]

=
E[π0,D0−h

τ(0,D0−h)∧T · (S
0,D0−h
τ(0,D0−h)∧T − x+ h)]

E[π0,D0−h
τ(0,D0−h)∧T ]

= g(0;D0 − h)− x+ h = g(0;D0 − h)− αx.

Given h1 < h2, we have τ(0, D0 − h1) ≥ τ(0, D0 − h2). Then,

E[π0,D0−h1
τ(0,D0−h1)] = E[E[π0,D0−h1

τ(0,D0−h1)|τ(0, D0 − h2)]] = E[π0,D0−h1
τ(0,D0−h2)]

= E[(ητ(0,D0−h2)∧T )1/2e
− γ

2
S
0,D0−h1
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 ]

= E[(ητ(0,D0−h2)∧T )1/2e
− γ

2
S
0,D0−h2
τ(0,D0−h2)∧T · e

GA
τ(0,D0−h2)∧T

+GB
τ(0,D0−h2)∧T

2 · e−γ/2(h2−h1)]

= E[π0,D0−h2
0,D0−h2 ]e−γ/2(h2−h1).
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Similarly,

E[π0,D0−h1
τ(0,D0−h1) · S

0,D0−h1
τ(0,D0−h1)] = E[E[π0,D0−h1

τ(0,D0−h1) · S
0,D0−h1
τ(0,D0−h1)|τ(0, D0 − h2)]]

= E[π0,D0−h1
τ(0,D0−h2) · S

0,D0−h1
τ(0,D0−h2)]e

−γ/2(h2−h1)

≥ E[π0,D0−h2
τ(0,D0−h2) · S

0,D0−h2
τ(0,D0−h2)]e

−γ/2(h2−h1).

Finally, let x1 < x2 and h1 = x1(1− α), h2 = x2(1− α). It follows that

g(x1;D0) = g(0;D0 − x1)− αx1 =
E[π0,D0−h1

τ(0,D0−h1)∧T · S
0,D0−h1
τ(0,D0−h1)∧T ]

E[π0,D0−h1
τ(0,D0−h1)∧T ]

− αx1

≥
E[π0,D0−h2

τ(0,D0−h2)∧T · S
0,D0−h2
τ(0,D0−h2)∧T ]

E[π0,D0−h2
τ(0,D0−h2)∧T ]

− αx1

= g(0;D0 − h2) = g(x2;D0) + αx2 − αx1 > g(x2;D0).

Thus, g(·, D0) is monotonic. This completes the proof of uniqueness.

E The Case of Correlated Dividend Processes

To impose a correlation between dividend processes, we assume that: under PA,

dD1,t = µA1 dt+ σ1dZt, (E.1)

dD2,t = µ2dt+ σ2dZt + µJdNt, (E.2)

and under PB:

dD1,t = µB1 dt+ σ1dZ
B
t , (E.3)

dD2,t = µ2dt+
σ2

σ1

δtdt+ σ2dZ
B
t + µJdNt, (E.4)

where µB1 = µA1 + δt and

dδt = −k(δt − δ̄)dt+ νdZt,

or

dδt = −k(δt − δ̄)dt+
ν

σ1

δtdt+ νdZB
t .
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Then the two dividend processes are correlated with instantaneous correlation

ρ =
σ2√

σ2
2 + κµ2

J

.

We assume no disagreement on jump intensity of the Poisson process Nt and study the

equilibrium prices without or with circuit breakers.

E.1 The Equilibrium Prices without Circuit Breakers

The pricing formula has the same expression as that in the uncorrelated case.

Ŝj,t = EAt
[
πATDj,T

EAt [πAT ]

]
, j = 1, 2,

where πAT = γζEAt [η
1/2
T · e− γ2 (D1,T+D2,T )]. However, the two prices cannot be evaluated

separately anymore because the two dividend processes are correlated (σ2 6= 0).

E.2 The Equilibrium Prices with Circuit Breakers

We derive the market clearing prices when the market is closed early due to the circuit

breaker.

Type A investors need to maximize the individual utility function

max
θA1,τ ,θ

A
2,τ

EAt [−e−γ(θA1,τ (D1,T−S1,τ )+θA2,τ (D2,T−S2,τ ))].

It results in first order conditions:

− γ(D1,τ − S1,τ )− γµA1 (T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ1(T − τ) = 0, (E.5)

− γ(D2,τ − S2,τ )− γµ2(T − τ) + γ2(θA1,τσ1 + θA2,τσ2)σ2(T − τ)− γµJκAe−γθ
A
2 µJ = 0.

(E.6)

For Type B investors, the optimization problem is

max
θB1,τ ,θ

B
2,τ

EBt [−e−γ(θB1,τ (D1,T−S1,τ )+θB2,τ (D2,T−S2,τ ))].
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We first obtain an expression for the following expectation for any real numbers x and y:

EBt [ex
∫ T
t δsds+y(ZBT −Z

B
t )] = eA(t;x,y)+C(t;x)δt ,

where

A(t;x, y) =
y2

2
(T − τ) + kδ̄

∫ T

t

C(s;x)ds+
ν2

2

∫ T

t

C(s;x)2ds+ yν

∫ T

t

C(s;x)ds,

C(t;x) =
x

k − ν
σ1

(1− e(k− ν
σ1

)(τ−T )
).

Then let y = −γ(θB1,τσ1 + θB2,τσ2) and x = −γ(θB1,τ + θB2,τ
σ2
σ1

); we obtain the first order

conditions for the maximization problem of Type B:

− γ(D1,τ − S1,τ )− γµA1 (T − τ) +
dA(t;x, y)

dθB1,τ
+
dC(t;x)

dθB1,τ
δt = 0, (E.7)

− γ(D2,τ − S2,τ )− γµ2(T − τ)− γκµJ(T − τ)e−γθ
B
2,τµJ +

dA(t;x, y)

dθB2,τ
+
dC(t;x)

dθB2,τ
δt = 0.

(E.8)

Along with the market clearing condition θAj,τ + θBj,τ = 1, j = 1, 2, the four first order

conditions determine the solution S∗1,τ , S
∗
2,τ , (θ

A
1,τ )
∗, (θA2,τ )

∗, that is the market clearing

prices and the share holdings at the market early closure time τ , respectively.

Next, as in the case of uncorrected dividend processes, we obtain the indirect utility

functions for Type A and Type B investors and the state price density. The equilibrium

stock prices at t < τ can be evaluated numerically by solving a fixed point problem

similar to (27).

In the above, we deal with the case of no disagreement on the jump intensity. To

incorporate a stochastic disagreement δ2,t into the model, we can follow the procedure in

Appendix B.2.

F Numerical Algorithms

P1: Solve for the Fixed Point Problem

Step 1. Initialize a solution and the threshold by letting S1,0 = 1, S2,0 = 1 and

h = (S1,0 + S2,0)(1− α).

Step 2. Generate M pairs of sample paths of D1,t and D2,t according to their dynamics
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(1) and (2) and stochastic differential equations of (6), (7) of δ1,t and δ2,t.

Step 3. Go through each sample ω: (1) Check whether the circuit breaker is triggered

at some time τ before T . If it is triggered, let Sj,T∧τ = Scj,τ , which is the market clearing

price at time τ . Otherwise, let Sj,T∧τ = Dj,T . (2) Calculate πAT∧τSj,T∧τ and πAT∧τ for each

sample, where πAT∧τ is calculate by Eq. (24). (3) Find the averages of the two quantities

over all samples. (4) Then let S̃j,0 be the ratio of the two averages.

Step 4. If ‖S̃0−S0‖ < tol, we find an approximated solution to the fixed point problem

with accuracy tol. Otherwise, let S0 = S̃0 and go to Step 1.

P2: Find Stock Prices at any time t′ < τ

Step 1. Using S0 obtained by P1 codes, let h = (S1,0 + S2,0)(1− α) be the threshold

of the circuit breakers.

Step 2. Generate M pairs of sample paths of D1,t and D2,t from t′ to T .

Step 3. Go through each sample ω: (1) Check whether the circuit breaker is triggered

at some time τ before T . If it is triggered, let Sj,T∧τ = Scj,τ , which is the market clearing

price at time τ . Otherwise, let Sj,T∧τ = Dj,T . (2) Calculate πAT∧τSj,T∧τ and πAT∧τ for each

sample, where πAT∧τ is calculate by Eq. (24). (3) Find the averages of the two quantities

over all samples. (4) Then let Sj,t′ be the ratio of the two averages, that is the stock price

at time t′.

P3: Calculate Correlation and Volatilities of S1,t and S2,t

Step 1. Find equilibrium prices S1,t and S2,t at a give time t < T by using P2 codes.

Step 2. Generate M sample pairs of (D1,t+∆t, D2,t+∆t) given (D1,t, D2,t).

Step 3. For each (D1,t+∆t, D2,t+∆t), calculate the equilibrium price S1,t+∆t and S2,t+∆t

and find the price change ∆Sj,t = Sj,t+∆t − Sj,t for j = 1, 2.

Step 4. Calculate the correlation of the M pairs of (∆S1,t,∆S2,t), as well as the

volatilities of ∆S1,t and ∆S2,t.
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